# -*- coding: utf-8 -*-
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import matplotlib.pyplot as plt
from time import time
import sys
from abel.direct import direct_transform
from abel.tools.analytical import GaussianAnalytical
n = 101
r_max = 30
sigma = 10
ref = GaussianAnalytical(n, r_max, sigma, symmetric=False)
fig, ax = plt.subplots(1, 2)
# forward Abel transform
reconC = direct_transform(ref.func, dr=ref.dr, direction="forward",
correction=True)
reconP = direct_transform(ref.func, dr=ref.dr, direction="forward",
correction=False)
ax[0].set_title('Forward transform of a Gaussian', fontsize='smaller')
ax[0].plot(ref.r, ref.abel, label='Analytical transform')
ax[0].plot(ref.r, reconC, '--', label='correction=True')
ax[0].plot(ref.r, reconP, ':', label='correction=False')
ax[0].set_ylabel('intensity (arb. units)')
ax[0].set_xlabel('radius')
# inverse Abel transform
reconc = direct_transform(ref.abel, dr=ref.dr, direction="inverse",
correction=True)
reconnoc = direct_transform(ref.abel, dr=ref.dr, direction="inverse",
correction=False)
ax[1].set_title('Inverse transform of a Gaussian', fontsize='smaller')
ax[1].plot(ref.r, ref.func, 'C0', label='Original function')
ax[1].plot(ref.r, reconc, 'C1--', label='correction=True')
ax[1].plot(ref.r, reconnoc, 'C2:', label='correction=False')
ax[1].set_xlabel('radius')
for axi in ax:
axi.set_xlim(0, 20)
axi.legend(labelspacing=0.1, fontsize='smaller')
# plt.savefig("plot_example_direct_gaussian.png", dpi=100)
plt.show()