Example: Hansen–Law

# -*- coding: utf-8 -*-
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

import numpy as np
import abel
import matplotlib.pylab as plt
import bz2

# Hansen and Law inverse Abel transform of velocity-map imaged electrons
# from O2- photodetachement at 454 nm. The spectrum was recorded in 2010
# at the Australian National University (ANU)
# J. Chem. Phys. 133, 174311 (2010) DOI: 10.1063/1.3493349

# load image as a numpy array
# use scipy.misc.imread(filename) to load image formats (.png, .jpg, etc)
print('HL: loading "data/O2-ANU1024.txt.bz2"')
imagefile = bz2.BZ2File('data/O2-ANU1024.txt.bz2')
IM = np.loadtxt(imagefile)

rows, cols = IM.shape    # image size

# center image returning odd size
IMc = abel.tools.center.center_image(IM, center='com')

# dr=0.5 may help reduce pixel grid coarseness
# NB remember to also pass as an option to angular_integration
AIM = abel.Transform(IMc, method='hansenlaw',
                     use_quadrants=(True, True, True, True),
                     symmetry_axis=None,
                     transform_options=dict(dr=0.5, align_grid=False),
                     angular_integration=True,
                     angular_integration_options=dict(dr=0.5),
                     verbose=True)

# convert to photoelectron spectrum vs binding energy
# conversion factors depend on measurement parameters
eBE, PES = abel.tools.vmi.toPES(*AIM.angular_integration,
                                energy_cal_factor=1.204e-5,
                                photon_energy=1.0e7/454.5, Vrep=-2200,
                                zoom=IM.shape[-1]/2048)

# Set up some axes
fig = plt.figure(figsize=(15, 4))
ax1 = plt.subplot2grid((1, 3), (0, 0))
ax2 = plt.subplot2grid((1, 3), (0, 1))
ax3 = plt.subplot2grid((1, 3), (0, 2))

# raw image
im1 = ax1.imshow(IM, aspect='auto', extent=[-512, 512, -512, 512])
fig.colorbar(im1, ax=ax1, fraction=.1, shrink=0.9, pad=0.03)
ax1.set_xlabel('x (pixels)')
ax1.set_ylabel('y (pixels)')
ax1.set_title('velocity map image: size {:d}x{:d}'.format(rows, cols))

# 2D transform
c2 = cols//2   # half-image width
im2 = ax2.imshow(AIM.transform, aspect='auto', vmin=0,
                 vmax=AIM.transform[:c2-50, :c2-50].max(),
                 extent=[-512, 512, -512, 512])
fig.colorbar(im2, ax=ax2, fraction=.1, shrink=0.9, pad=0.03)
ax2.set_xlabel('x (pixels)')
ax2.set_ylabel('y (pixels)')
ax2.set_title('Hansen Law inverse Abel')

# 1D speed distribution
#ax3.plot(radial, speeds/speeds[200:].max())
#ax3.axis(xmax=500, ymin=-0.05, ymax=1.1)
#ax3.set_xlabel('speed (pixel)')
#ax3.set_ylabel('intensity')
#ax3.set_title('speed distribution')

# PES
ax3.plot(eBE, PES/PES[eBE < 5000].max())
ax3.axis(xmin=0)
ax3.set_xlabel(r'elecron binding energy (cm$^{-1}$)')
ax3.set_ylabel('intensity')
ax3.set_title(r'O${_2}{^-}$ 454 nm photoelectron spectrum')

# Prettify the plot a little bit:
plt.subplots_adjust(left=0.06, bottom=0.17, right=0.95, top=0.89, wspace=0.35,
                    hspace=0.37)

# save copy of the plot
plt.savefig('plot_example_hansenlaw.png', dpi=100)

plt.show()
_images/example_hansenlaw.svg