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Chapter 1

PyAbel README

1.1 Introduction

PyAbel is a Python package that provides functions for the forward and inverse Abel transforms. The forward Abel
transform takes a slice of a cylindrically symmetric 3D object and provides the 2D projection of that object. The inverse
Abel transform takes a 2D projection and reconstructs a slice of the cylindrically symmetric 3D distribution.

r

z

3D object
(cylindrically
symmetric)

Inverse Abel transform

Forward Abel transform

y

z

2D projection

Inverse Abel transforms play an important role in analyzing the projections of angle-resolved photoelectron/photoion
spectra, plasma plumes, flames, and solar occultation.

PyAbel provides efficient implementations of several Abel transform algorithms, as well as related tools for centering
images, symmetrizing images, and calculating properties such as the radial intensity distribution and the anisotropy
parameters.

1
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1.2 Transform Methods

The outcome of the numerical Abel transform depends on the exact method used. So far, PyAbel includes the following
transform methods:

1. basex – Gaussian basis set expansion of Dribinski and co-workers.

2. hansenlaw – recursive method of Hansen and Law.

3. direct – numerical integration of the analytical Abel transform equations.

4. two_point – the “two point” method of Dasch and co-workers.

5. three_point – the “three point” method of Dasch and co-workers.

6. onion_peeling – the “onion peeling” deconvolution method of Dasch and co-workers.

7. onion_bordas – “onion peeling” or “back projection” method of Bordas et al. based on the MatLab code by
Rallis and Wells et al.

8. linbasex – the 1D-spherical basis set expansion of Gerber et al.

9. rbasex – a pBasex-like method formulated in terms of radial distributions.

10. daun – the regularized deconvolution method by Daun and co-workers, with additional capabilities.

1.3 Installation

PyAbel requires Python 3.7–3.12. (Note: PyAbel is also currently tested to work with Python 2.7, but Python 2 support
will be removed soon.) NumPy and SciPy are also required, and Matplotlib is required to run the examples. If you
don’t already have Python, we recommend an “all in one” Python package such as the Anaconda Python Distribution,
which is available for free.

The latest release can be installed from PyPI with

pip install PyAbel

If you prefer the development version from GitHub, download it here (clicking the [Code ▼] button), cd to the PyAbel
directory, and use

pip install .

Or, if you wish to edit the PyAbel source code without re-installing each time,

pip install -e .

1.3.1 Before uninstalling

Some transform methods can save generated basis sets to disk. If you want to uninstall PyAbel completely, these files
need to be removed as well. To do so, please first run the following script:

import abel
import shutil
shutil.rmtree(abel.transform.get_basis_dir())

and then proceed with the usual module uninstallation process (for example, pip uninstall PyAbel if it was in-
stalled using pip).

2 Chapter 1. PyAbel README
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1.4 Example of use

Using PyAbel can be simple. The following Python code imports the PyAbel package, generates a sample image,
performs a forward transform using the Hansen–Law method, and then an inverse transform using the Three Point
method:

import abel
original = abel.tools.analytical.SampleImage(name='Gerber').func
forward_abel = abel.Transform(original, direction='forward',

method='hansenlaw').transform
inverse_abel = abel.Transform(forward_abel, direction='inverse',

method='three_point').transform

Note: the abel.Transform() class returns a Python class object, where the 2D Abel transform is accessed through
the .transform attribute.

The results can then be plotted using Matplotlib:

import matplotlib.pyplot as plt
import numpy as np

fig, axs = plt.subplots(1, 2, figsize=(6, 3))

axs[0].imshow(forward_abel, clim=(0, None), cmap='ocean_r')
axs[1].imshow(inverse_abel, clim=(0, None), cmap='ocean_r')

axs[0].set_title('Forward Abel transform')
axs[1].set_title('Inverse Abel transform')

plt.tight_layout()
plt.show()

Output:
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Note: Additional examples can be viewed in PyAbel examples, and even more are found in the PyAbel/examples
directory.

1.5 Documentation

General information about the various Abel transforms available in PyAbel is available at the links above. The complete
documentation for all of the methods in PyAbel is hosted at https://pyabel.readthedocs.io.

1.6 Conventions

The PyAbel code adheres to the following conventions:

• Image orientation: PyAbel adopts the “television” convention, where IM[0, 0] refers to the upper left corner
of the image. (This means that plt.imshow(IM) should display the image in the proper orientation, without
the need to use the origin='lower' keyword.) Image coordinates are in the (row, column) format, consistent
with NumPy array indexing, and negative values are interpreted as relative to the end of the corresponding axis.
For example, (-1, 0) refers to the lower left corner (last row, 0th column). Cartesian coordinates can also be
generated if needed. For example, the x, y grid for a centered 5×5 image:

x = np.linspace(-2, 2, 5)
X, Y = np.meshgrid(x, -x) # notice the minus sign in front of the y coordinate

The abel.tools.polar.index_coords function does this for images of any shape with any origin.

• Angle: All angles in PyAbel are measured in radians. When an absolute angle is defined, zero angle corresponds
to the upwards vertical direction. Positive values are on the right side, and negative values on the left side. The
range of angles is from −𝜋 to +𝜋. The polar grid for a centered 5×5 image can be generated (following the code
above) using

R = np.sqrt(X**2 + Y**2)
THETA = np.arctan2(X, Y)

where the usual (Y, X) convention of arctan2 has been reversed in order to place zero angle in the vertical
direction. Consequently, to convert the angular grid back to the Cartesian grid, we use

X = R * np.sin(THETA)
Y = R * np.cos(THETA)

The abel.tools.polar.cart2polar and abel.tools.polar.polar2cart functions are available for con-
version between these Cartesian and polar grids.

• Image origin: Fundamentally, the forward and inverse Abel transforms in PyAbel consider the origin of the
image to be located in the center of a pixel. This means that, for a symmetric image, the image will have a width
that is an odd number of pixels. (The central pixel is effectively “shared” between both halves of the image.)
In most situations, the image origin is specified using the origin keyword in abel.Transform (or directly
using abel.tools.center.center_image to find the origin (the center of symmetry) of your image). This
processing step takes care of shifting the origin of the image to the middle of the central pixel. However, if the
individual Abel transforms methods are used directly, care must be taken to supply a properly centered image.
Some methods also provide low-level functions for transforming only the right half of the image (with the origin
located in the middle of a 0th-column pixel).

4 Chapter 1. PyAbel README
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• Intensity: The pixel intensities can have any value (within the floating-point range). However, the intensity
scale must be linear. Keep in mind that cameras and common image formats often use gamma correction and
thus provide data with nonlinear intensity encoding. Thus, if possible, it is recommended to disable the gamma
correction on cameras used to record images that will be inverse Abel-transformed. If this is not possible, then
it is necessary to apply the appropriate intensity transformations before the analysis. Most PyAbel methods also
assume intensities to be floating-point numbers, and when applied to integer types, can return inappropriately
rounded results. The abel.Transform class recasts the input image to float64 by default, but if you wish to
call the transform methods directly or use other tools, you might need to perform the conversion yourself (as
IM.astype(float), for example).

1.7 Support

If you have a question about using PyAbel, the best way to contact the PyAbel Developers Team is through GitHub
discussions. To report a bug or make a suggestion, please open a new issue.

1.8 Contributing

We welcome suggestions for improvement, together with any interesting images that demonstrate application of PyAbel.

Either open a new issue or make a pull request.

Contributing to PyAbel has more information on how to contribute, such as how to run the unit tests and how to build
the documentation.

1.9 License

PyAbel is licensed under the MIT license, so it can be used for pretty much whatever you want! Of course, it is provided
“as is” with absolutely no warranty.

1.10 Citation

First and foremost, please cite the paper(s) corresponding to the implementation of the Abel transform that you use in
your work. The references can be found at the links above.

If you find PyAbel useful in you work, it would bring us great joy if you would cite the project. You can find the DOI
for the lastest verison at Zenodo.

Additionally, we have written a scientific paper comparing various Abel transform methods. You can find the
manuscript at the Review of Scientific Instruments (DOI: 10.1063/1.5092635) or on arxiv (arxiv.org/abs/1902.09007).

Have fun!

1.7. Support 5

https://en.wikipedia.org/wiki/Gamma_correction
https://github.com/PyAbel/PyAbel/discussions
https://github.com/PyAbel/PyAbel/issues
https://github.com/PyAbel/PyAbel/issues
https://github.com/PyAbel/PyAbel/pulls
https://github.com/PyAbel/PyAbel/blob/master/LICENSE.txt
https://dx.doi.org/10.5281/zenodo.594858
https://doi.org/10.1063/1.5092635
https://arxiv.org/abs/1902.09007


Chapter 2

abel package

2.1 abel.transform module

class abel.transform.Transform(IM, direction='inverse', method='three_point', origin='none', symmetry_
axis=None, use_quadrants=(True, True, True, True), symmetrize_
method='average', angular_integration=False, transform_options={},
center_options={}, angular_integration_options={}, recast_as_
float64=True, verbose=False, center=<deprecated>)

Bases: object

Abel transform image class. Also accessible as abel.Transform.

This class provides whole-image forward and inverse Abel transforms, together with preprocessing (centering,
symmetrizing) and postprocessing (integration) functions.

Parameters

• IM (a N×M numpy array) – This is the image to be transformed

• direction (str) – The type of Abel transform to be performed.

forward
A forward Abel transform takes a (2D) slice of a 3D image and returns the 2D projection.

inverse (default)
An inverse Abel transform takes a 2D projection and reconstructs a 2D slice of the 3D
image.

• method (str) – specifies which numerical approximation to the Abel transform should be
employed (see below). The options are

basex
the Gaussian “basis set expansion” method of Dribinski et al. (2002).

daun
the deconvolution method with Tikhonov regularization of Daun et al. and its extensions.

direct
a naive implementation of the analytical formula by Roman Yurchuk.

hansenlaw
the recursive algorithm described by Hansen and Law (1985).

6
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linbasex
the 1D projections of velocity-mapping images in terms of 1D spherical functions by Ger-
ber et al. (2013).

onion_bordas
the algorithm of Bordas and co-workers (1996), re-implemented by Rallis, Wells and co-
workers (2014).

onion_peeling
the onion peeling deconvolution as described by Dasch (1992).

rbasex
a method similar to pBasex by Garcia et al. (2004) for velocity-mapping images, but with
analytical basis functions developed by Ryazanov (2012).

three_point
the three-point transform of Dasch (1992).

two_point
the two-point transform of Dasch (1992).

• origin (tuple or str) – Before applying Abel transform, the image is centered around this
point.

If a tuple (float, float) is provided, this specifies the image origin in the (row, column) format.
If a string is provided, an automatic centering algorithm is used:

image_center
The origin is assumed to be the center of the image.

convolution
The origin is found from autoconvolution of image projections along each axis.

slice
The origin is found by comparing slices in the horizontal and vertical directions.

com
The origin is calculated as the center of mass.

gaussian
The origin is found using a fit to a Gaussian function. This only makes sense if your data
looks like a Gaussian.

none (default)
No centering is performed. An image with an odd number of columns must be provided.

• symmetry_axis (None, int or tuple) – Symmetrize the image about the numpy axis 0 (ver-
tical), 1 (horizontal), (0, 1) (both axes). Note that the Abel transform is always performed
around the vertical axis. This parameter only affects how the image is modified before (and
after) applying the Abel transform. For more information, see the “Quadrant combining”
note below.

• use_quadrants (tuple of 4 booleans) – select quadrants to be used in the analysis: (Q0, Q1,
Q2, Q3). Quadrants are numbered counter-clockwide from upper right. See note below for
description of quadrants. Default is (True, True, True, True), which uses all quad-
rants.

• symmetrize_method (str) – Method used for symmetrizing the image.

average
Average the quadrants, in accordance with the symmetry_axis.

2.1. abel.transform module 7
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fourier
Axial symmetry implies that the Fourier components of the 2D projection should be real.
Removing the imaginary components in reciprocal space leaves a symmetric projection.

K. R. Overstreet, P. Zabawa, J. Tallant, A. Schwettmann, J. P. Shaffer, “Multiple scattering
and the density distribution of a Cs MOT”, Optics Express 13, 9672–9682 (2005).

• angular_integration (bool) – Integrate the image over angle to give the radial (speed) in-
tensity distribution.

Note: in PyAbel ≤0.8.4 the intensity distribution was off by a factor of 𝜋, please keep this in
mind when comparing absolute intensities.

• transform_options (dict) – Additional arguments passed to the individual transform func-
tions. See the documentation for the individual transform method for options: basex, daun,
direct, hansenlaw, linbasex, onion_bordas, onion_peeling, rbasex, three_
point, two_point.

• center_options (dict) – Additional arguments to be passed to the centering function, see
abel.tools.center.center_image().

• angular_integration_options (dict) – Additional arguments passed to the angular integra-
tion functions, see abel.tools.vmi.angular_integration_3D().

• recast_as_float64 (bool) – determines whether the input image should be recast to float64.
Many images are imported in other formats (such as uint8 or uint16), and this does not
always play well with the transorm algorithms. This should probably always be set to True
(default).

• verbose (bool) – determines whether non-critical output should be printed.

Note: Quadrant combining: The quadrants can be combined (averaged) using the use_quadrants keyword in
order to provide better data quality.

The quadrants are numbered starting from Q0 in the upper right and proceeding counter-clockwise:

+--------+--------+
| Q1 * | * Q0 |
| * | * |
| * | * | AQ1 | AQ0
+--------o--------+ --([inverse] Abel transform)--> ----o----
| * | * | AQ2 | AQ3
| * | * |
| Q2 * | * Q3 | AQi == [inverse] Abel transform
+--------+--------+ of quadrant Qi

Three cases are possible:

1) symmetry_axis = 0 (vertical):

Combine: Q01 = Q0 + Q1, Q23 = Q2 + Q3
inverse image AQ01 | AQ01

-----o----- (left and right sides equivalent)
AQ23 | AQ23

2) symmetry_axis = 1 (horizontal):

8 Chapter 2. abel package
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Combine: Q12 = Q1 + Q2, Q03 = Q0 + Q3
inverse image AQ12 | AQ03

-----o----- (top and bottom equivalent)
AQ12 | AQ03

3) symmetry_axis = (0, 1) (both):

Combine: Q = Q0 + Q1 + Q2 + Q3
inverse image AQ | AQ

---o--- (all quadrants equivalent)
AQ | AQ

Notes

As mentioned above, PyAbel offers several different approximations to the the exact Abel transform. All the
methods should produce similar results, but depending on the level and type of noise found in the image, certain
methods may perform better than others. Please see the Transform Methods section of the documentation for
complete information.

The methods marked with a * indicate methods that generate basis sets. The first time they are run for a new
image size, it takes seconds to minutes to generate the basis set. However, this basis set is saved to disk can be
reloaded, meaning that future transforms are performed much more quickly.

basex *
The “basis set exapansion” algorithm describes the data in terms of gaussian-like functions, which them-
selves can be Abel-transformed analytically. With the default functions, centered at each pixel, this method
also does not make any assumption about the shape of the data. This method is one of the de-facto standards
in photoelectron/photoion imaging.

V. Dribinski, A. Ossadtchi, V. A. Mandelshtam, H. Reisler, “Reconstruction of Abel-transformable images:
The Gaussian basis-set expansion Abel transform method”, Rev. Sci. Instrum. 73, 2634–2642 (2002).

daun *
Methods based on onion-peeling deconvolution using Tikhonov regularization described in

K. J. Daun, K. A. Thomson, F. Liu, G. J. Smallwood, “Deconvolution of axisymmetric flame properties
using Tikhonov regularization”, Appl. Opt. 45, 4638–4646 (2006).

In addition to the original implicit step-functions basis (“onion peeling”) and the derivative regularization,
linear and quadratic basis functions are implemented, as well as the 𝐿2-norm Tikhonov regularization (like
in basex) and non-negative least-squares solution.

direct
This method attempts a direct integration of the Abel-transform integral. It makes no assumptions about
the data (apart from cylindrical symmetry), but it typically requires fine sampling to converge. Such meth-
ods are typically inefficient, but thanks to this Cython implementation (by Roman Yurchuk), this “direct”
method is competitive with the other methods.

hansenlaw
This “recursive algorithm” produces reliable results and is quite fast (~0.1 s for a 1001×1001 image). It
makes no assumptions about the data (apart from cylindrical symmetry). It tends to require that the data is
finely sampled for good convergence.

E. W. Hansen, P.-L. Law, “Recursive methods for computing the Abel transform and its inverse”, J. Opt.
Soc. Am. A 2, 510–520 (1985).
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linbasex *
Velocity-mapping images are composed of projected Newton spheres with a common centre. The 2D
images are usually evaluated by a decomposition into base vectors, each representing the 2D projection
of a set of particles starting from a centre with a specific velocity distribution. Lin-BASEX evaluates 1D
projections of VM images in terms of 1D projections of spherical functions, instead.

Th. Gerber, Yu. Liu, G. Knopp, P. Hemberger, A. Bodi, P. Radi, Ya. Sych, “Charged particle velocity map
image reconstruction with one-dimensional projections of spherical functions”, Rev. Sci. Instrum. 84,
033101 (2013).

onion_bordas
The onion peeling method, also known as “back projection”, originates from C. Bordas, F. Paulig, “Pho-
toelectron imaging spectrometry: Principle and inversion method”, Rev. Sci. Instrum. 67, 2257–2268
(1996).

The algorithm was subsequently coded in MatLab by C. E. Rallis, T. G. Burwitz, P. R. Andrews, M.
Zohrabi, R. Averin, S. De, B. Bergues, B. Jochim, A. V. Voznyuk, N. Gregerson, B. Gaire, I. Znakovskaya,
J. McKenna, K. D. Carnes, M. F. Kling, I. Ben-Itzhak, E. Wells, “Incorporating real time velocity map
image reconstruction into closed-loop coherent control”, Rev. Sci. Instrum. 85, 113105 (2014), which was
used as the basis of this Python port. See issue #56.

onion_peeling *
This is one of the most compact and fast algorithms, with the inverse Abel transform achieved in one Python
code-line, PR #155. See also three_point is the onion peeling algorithm as described by Dasch (1992),
reference below.

rbasex *
The pBasex method by G. A. Garcia, L. Nahon, I. Powis, “Two-dimensional charged particle image inver-
sion using a polar basis function expansion”, Rev. Sci. Instrum. 75, 4989–2996 (2004) adapts the BASEX
(“basis set expansion”) method to the specific case of velocity-mapping images by using a basis of 2D
functions in polar coordinates, such that the reconstructed radial distributions are obtained directly from
the expansion coefficients.

This method employs the same approach, but uses more convenient basis functions, which have analytical
Abel transforms separable into radial and angular parts, developed in M. Ryazanov, “Development and
implementation of methods for sliced velocity map imaging. Studies of overtone-induced dissociation and
isomerization dynamics of hydroxymethyl radical (CH2OH and CD2OH)”, Ph.D. dissertation, University
of Southern California, 2012 (ProQuest, USC).

three_point *
The “Three Point” Abel transform method exploits the observation that the value of the Abel inverted data
at any radial position r is primarily determined from changes in the projection data in the neighborhood of
r. This method is also very efficient once it has generated the basis sets.

C. J. Dasch, “One-dimensional tomography: a comparison of Abel, onion-peeling, and filtered backpro-
jection methods”, Appl. Opt. 31, 1146–1152 (1992).

two_point *
Another Dasch method. Simple, and fast, but not as accurate as the other methods.

The following class attributes are available, depending on the calculation.

Returns

• transform (numpy 2D array) – the 2D forward/inverse Abel-transformed image.

• angular_integration (tuple) – (radial-grid, radial-intensity) radial coordinates and the radial
intensity (speed) distribution, evaluated using abel.tools.vmi.angular_integration_
3D().

• residual (numpy 2D array) – residual image (not currently implemented).
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• IM (numpy 2D array) – the input image, re-centered (optional) with an odd-size width.

• method (str) – transform method, as specified by the input option.

• direction (str) – transform direction, as specified by the input option.

• radial (numpy 1D array) – with method='linbasex': radial grid for Beta array

• Beta (numpy 2D array) – with method='linbasex': coefficients of Newton-sphere spher-
ical harmonics

Beta[0] — the radial intensity variation

Beta[1] — the anisotropy parameter variation

. . . Beta[n] — higher-order terms up to legedre_orders = [0, . . . , n]

• projection (numpy 2D array) – with method='linbasex': radial projection profiles at
angles proj_angles

• distr (Distributions.Results object) – with method='rbasex': the object from which vari-
ous radial distributions can be retrieved

abel.transform.set_basis_dir(basis_dir='', make=True)
Changes the path to the directory for saving/loading cached basis sets that transform methods use by default.

Parameters

• basis_dir (str or None) – absolute or relative path. Passing '' (default) resets to the system-
dependent default path, see default_basis_dir(). For the current working directory (as
in PyAbel up to v0.8.4), use '.'. To disable basis-set caching on disk, use None.

• make (bool) – create the directory if it does not exist (default: yes)

Return type
None

abel.transform.get_basis_dir(make=False)
Gets the path to the directory for saving/loading cached basis sets that transform methods use by default. If not
changed by set_basis_dir(), it depends on the operating system, see default_basis_dir().

Parameters
make (bool) – create the directory if it does not exist (default: no)

Returns
path – absolute or relative path if disk caching is enabled, otherwise None

Return type
str or None

abel.transform.default_basis_dir()

Gets full path to the system-dependent default directory for saving/loading cached basis sets:

Linux (and other Unix-like):
~/.cache/PyAbel (or $XDG_CACHE_HOME/PyAbel if set)

macOS:
/Users/<user>/Library/Caches/PyAbel

Windows:
<user profile>\AppData\Local\PyAbel\cache (or %LOCALAPPDATA%\PyAbel\cache if set). See
important notes below.

2.1. abel.transform module 11
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Parameters
None

Returns
path – full path to the system-dependent default basis-sets directory

Return type
str

Notes for MS Windows users

• Python installed from Microsoft Store redirects subdirectory creation in AppData\Local to a “private per-
user, per-app location” AppData\Local\Packages\Python...\LocalCache\Local (see Using Python
on Windows / Known Issues). However, if AppData\Local\PyAbel\ already exists (for example, was
manually created not from Python), apparently it should be usable.

• Old Windows versions (2000, XP, Server 2003) by default don’t set the LOCALAPPDATA environment vari-
able, so PyAbel will create and use the AppData\Local subtree in the user profile folder. This is probably
fine, but not how it should be. To use the standard location, please do

set LOCALAPPDATA=%USERPROFILE%\Local Settings\Application Data

before starting Python. Or permanently set it in “Environment Variables” from Windows “System Proper-
ties”.

abel.transform.basis_dir_cleanup(basis_dir='', method=None)
Deletes saved basis sets.

Parameters

• basis_dir (str or None) – path to the directory with saved basis sets. Use '' for the default
directory, see get_basis_dir(). (For convenience, None can be passed to do nothing.)

• method (str or list of str or None) – transform methods for which basis sets should be deleted.
Can be a single string (see the method parameter in Transform) or a list of strings. Use
'all' to delete basis sets for all methods. None does nothing.

Return type
None

2.2 abel.basex module

abel.basex.basex_transform(data, sigma=1.0, reg=0.0, correction=True, basis_dir='', dr=1.0, verbose=True,
direction='inverse')

This function performs the BASEX (BAsis Set EXpansion) Abel transform. It works on a “right side” image. I.e.,
it works on just half of a cylindrically symmetric object, and data[0,0] should correspond to a central pixel.
To perform a BASEX transform on a whole image, use

abel.Transform(image, method='basex', direction='inverse').transform

This BASEX implementation only works with images that have an odd-integer full width.

Parameters

• data (m × n numpy array) – the image to be transformed. data[:,0] should correspond to
the central column of the image.
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• sigma (float) – width parameter for basis functions, see equation (14) in the article. Deter-
mines the number of basis functions (n/sigma rounded). Can be any positive number, but
using sigma < 1 is not very meaningful and requires regularization.

• reg (float) –

regularization parameter, square of the Tikhonov factor.

reg=0 means no regularization,

reg=100 is a reasonable value for megapixel images.

Forward transform requires regularization only if sigma < 1, and reg should be≪ 1.

• correction (boolean) – apply intensity correction in order to reduce method artifacts (inten-
sity normalization and oscillations)

• basis_dir (str or None) – path to the directory for saving / loading the basis sets. Use '' for
the default directory. If None, the basis set will not be loaded from or saved to disk.

• dr (float) – size of one pixel in the radial direction. This only affects the absolute scaling of
the transformed image.

• verbose (boolean) – determines whether statements should be printed

• direction (str: 'forward' or 'inverse') – type of Abel transform to be performed

Returns
recon – the transformed (half) image

Return type
m × n numpy array

abel.basex.basex_core_transform(rawdata, A)
Internal function that does the actual BASEX transform. It requires that the transform matrix be passed.

Parameters

• rawdata (m × n numpy array) – right half (with the axis) of the input image.

• A (n × n numpy array) – 2D array given by the transform-calculation function

Returns
IM – the Abel-transformed image

Return type
m × n numpy array

abel.basex.get_bs_cached(n, sigma=1.0, reg=0.0, correction=True, basis_dir='', dr=1.0, verbose=False,
direction='inverse')

Internal function.

Gets BASEX basis sets, using the disk as a cache (i.e. load from disk if they exist, if not, calculate them and
save a copy on disk) and calculates the transform matrix. To prevent saving the basis sets to disk, set basis_
dir=None. Loaded/calculated matrices are also cached in memory.

Parameters

• n (int) – Abel transform will be performed on an n pixels wide area of the (half) image

• sigma (float) – width parameter for basis functions

• reg (float) – regularization parameter

2.2. abel.basex module 13
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• correction (boolean) – apply intensity correction. Corrects wrong intensity normalization
(seen for narrow basis sets), intensity oscillations (seen for broad basis sets), and intensity
drop-off near r = 0 due to regularization.

• basis_dir (str or None) – path to the directory for saving / loading the basis sets. Use '' for
the default directory. If None, the basis sets will not be loaded from or saved to disk.

• dr (float) – pixel size. This only affects the absolute scaling of the output.

• verbose (boolean) – determines whether statements should be printed

• direction (str: 'forward' or 'inverse') – type of Abel transform to be performed

Returns
A – matrix of the Abel transform (forward or inverse)

Return type
n × n numpy array

abel.basex.cache_cleanup(select='all')
Utility function.

Frees the memory caches created by get_bs_cached(). This is usually pointless, but might be required after
working with very large images, if more RAM is needed for further tasks.

Parameters
select (str) – selects which caches to clean:

all (default)
everything, including basis;

forward
forward transform;

inverse
inverse transform.

Return type
None

abel.basex.basis_dir_cleanup(basis_dir='')
Utility function.

Deletes basis sets saved on disk.

Parameters
basis_dir (str or None) – absolute or relative path to the directory with saved basis sets. Use ''
for the default directory. None does nothing.

Return type
None

abel.basex.get_basex_correction(A, sigma, direction)
Internal function.

The default BASEX basis and the way its projection is calculated leads to artifacts in the reconstructed distribution
– incorrect overall intensity for sigma = 1, intensity oscillations for other sigma values, intensity fluctuations
(and drop-off for reg > 0) near r = 0. This function generates the intensity correction profile from the BASEX
result for a step function with a soft edge (to avoid ringing) aligned with the last basis function.

Parameters

• A (n × n numpy array) – matrix of the Abel transform

14 Chapter 2. abel package
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• sigma (float) – basis width parameter

• direction (str: 'forward' or 'inverse') – type of the Abel transform

Returns
cor – intensity correction profile

Return type
1 × n numpy array

2.3 abel.dasch module

abel.dasch.two_point_transform(IM, basis_dir='', dr=1, direction='inverse', verbose=False)
The two-point deconvolution method.

C. J. Dasch, “One-dimensional tomography: a comparison of Abel, onion-peeling, and filtered backprojection
methods”, Appl. Opt. 31, 1146–1152 (1992).

Parameters

• IM (1D or 2D numpy array) – right-side half-image (or quadrant)

• basis_dir (str or None) – path to the directory for saving / loading the “two_point” decon-
volution operator array. Here, called basis_dir for consistency with the other true basis
methods. Use '' for the default directory. If None, the operator array will not be loaded
from or saved to disk.

• dr (float) – sampling size (=1 for pixel images), used for Jacobian scaling. The resulting
inverse transform is simply scaled by 1/dr.

• direction (str) – only the direction=”inverse” transform is currently implemented

• verbose (bool) – trace printing

Returns
inv_IM – the “two_point” inverse Abel transformed half-image

Return type
1D or 2D numpy array

abel.dasch.three_point_transform(IM, basis_dir='', dr=1, direction='inverse', verbose=False)
The three-point deconvolution method.

C. J. Dasch, “One-dimensional tomography: a comparison of Abel, onion-peeling, and filtered backprojection
methods”, Appl. Opt. 31, 1146–1152 (1992).

Parameters

• IM (1D or 2D numpy array) – right-side half-image (or quadrant)

• basis_dir (str or None) – path to the directory for saving / loading the “three_point” decon-
volution operator array. Here, called basis_dir for consistency with the other true basis
methods. Use '' for the default directory. If None, the operator array will not be loaded
from or saved to disk.

• dr (float) – sampling size (=1 for pixel images), used for Jacobian scaling. The resulting
inverse transform is simply scaled by 1/dr.

• direction (str) – only the direction=”inverse” transform is currently implemented

• verbose (bool) – trace printing

2.3. abel.dasch module 15
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Returns
inv_IM – the “three_point” inverse Abel transformed half-image

Return type
1D or 2D numpy array

abel.dasch.onion_peeling_transform(IM, basis_dir='', dr=1, direction='inverse', verbose=False)
The onion-peeling deconvolution method.

C. J. Dasch, “One-dimensional tomography: a comparison of Abel, onion-peeling, and filtered backprojection
methods”, Appl. Opt. 31, 1146–1152 (1992).

Parameters

• IM (1D or 2D numpy array) – right-side half-image (or quadrant)

• basis_dir (str or None) – path to the directory for saving / loading the “onion_peeling”
deconvolution operator array. Here, called basis_dir for consistency with the other true
basis methods. Use '' for the default directory. If None, the operator array will not be loaded
from or saved to disk.

• dr (float) – sampling size (=1 for pixel images), used for Jacobian scaling. The resulting
inverse transform is simply scaled by 1/dr.

• direction (str) – only the direction=”inverse” transform is currently implemented

• verbose (bool) – trace printing

Returns
inv_IM – the “onion_peeling” inverse Abel transformed half-image

Return type
1D or 2D numpy array

abel.dasch.dasch_transform(IM, D)
Inverse Abel transform using the given deconvolution D-operator array.

Parameters

• IM (2D numpy array) – image data

• D (2D numpy array) – deconvolution operator array, of shape (cols, cols)

Returns
inv_IM – inverse Abel transform according to deconvolution operator D

Return type
2D numpy array

abel.dasch.get_bs_cached(method, cols, basis_dir='', verbose=False)
Load Dasch method deconvolution operator array from cache, or disk. Generate and store if not available.

Checks whether method deconvolution array has been previously calculated, or whether the file {method}_
basis_{cols}.npy is present in basis_dir.

Either, assign, read, or generate the deconvolution array (saving it to file).

Parameters

• method (str) – Abel transform method onion_peeling, three_point, or two_point

• cols (int) – width of image
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• basis_dir (str or None) – path to the directory for saving or loading the deconvolution array.
Use '' for the default directory. For None, do not load or save the deconvolution operator
array

• verbose (boolean) – print information (mainly for debugging purposes)

Returns

• D (numpy 2D array of shape (cols, cols)) – deconvolution operator array for the associated
method

• file.npy (file) – saves D, the deconvolution array to file name: {method}_basis_{cols}.
npy

abel.dasch.cache_cleanup()

Utility function.

Frees the memory caches created by get_bs_cached(). This is usually pointless, but might be required after
working with very large images, if more RAM is needed for further tasks.

Parameters
None

Return type
None

abel.dasch.basis_dir_cleanup(method, basis_dir='')
Utility function.

Deletes deconvolution operator arrays saved on disk.

Parameters

• method (str) – Abel transform method 'onion_peeling', 'three_point', or 'two_
point'

• basis_dir (str or None) – absolute or relative path to the directory with saved deconvolution
operator arrays. Use '' for the default directory. None does nothing.

Return type
None

2.4 abel.daun module

abel.daun.daun_transform(data, reg=0.0, degree=0, dr=1.0, direction='inverse', basis_dir=None,
verbose=True)

Forward and inverse Abel transforms based on onion-peeling deconvolution using Tikhonov regularization de-
scribed in

K. J. Daun, K. A. Thomson, F. Liu, G. J. Smallwood, “Deconvolution of axisymmetric flame properties using
Tikhonov regularization”, Appl. Opt. 45, 4638–4646 (2006).

with additional basis-function types and regularization methods (see description).

This function operates on the “right side” of an image, that it, just one half of a cylindrically symmetric image,
with the axial pixels located in the 0-th column.

Parameters

• data (m × n numpy array) – the image to be transformed. data[:, 0] should correspond
to the central column of the image.

2.4. abel.daun module 17
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• reg (float or tuple or str) – regularization for the inverse transform:

strength:
same as ('diff', strength)

('diff', strength):
Tikhonov regularization using the first-order difference operator (first-derivative approxi-
mation), as described in the original article

('L2', strength):
Tikhonov regularization using the 𝐿2 norm, like in BASEX

('L2c', strength):
same as ('L2', strength), but with an intensity correction applied to compensate the
drop near the symmetry axis

'nonneg':
non-negative least-squares solution.

Warning: this regularization method is very slow, typically taking up to a minute for a
megapixel image.

• degree (int) – degree of basis-function polynomials:

0:
rectangular functions (step-function approximation), corresponding to “onion peeling”
from the original article

1:
triangular functions (piecewise linear approximation)

2:
piecewise quadratic functions (smooth approximation)

3:
piecewise cubic functions (cubic-spline approximation)

• dr (float) – pixel size in the radial direction. This only affects the absolute scaling of the
transformed image.

• direction (str: 'forward' or 'inverse') – type of Abel transform to be performed

• basis_dir (str, optional) – path to the directory for saving / loading the basis set (potentially
useful only for degree = 3 and transform without regularization; time savings in other cases
are small and might be negated by the disk-access overhead). Use '' for the default directory.
If None (default), the basis set will not be loaded from or saved to disk.

• verbose (bool) – determines whether progress report should be printed

Returns
recon – the transformed (half) image

Return type
m × n numpy array

abel.daun.get_bs_cached(n, degree=0, reg_type='diff', strength=0, direction='inverse', basis_dir=None,
verbose=False)

Internal function.

Gets the basis set and calculates the necessary transform matrix (notice that inverse direction with 'nonneg'
regularization, as well as with strength = 0 for degree ̸= 3, gives the forward (triangular) matrix, to be used in
solvers).

Parameters
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• n (int) – half-width of the image in pixels, must include the axial pixel

• degree (int) – polynomial degree for basis functions (0–3)

• reg_type (None or str) – regularization type (None, 'diff', 'L2', 'L2c', 'nonneg')

• strength (float) – Tikhonov regularization parameter (for reg_type = 'diff' and
'L2'/'L2c', ignored otherwise)

• direction (str: 'forward' or 'inverse') – type of Abel transform to be performed

• basis_dir (str or None) – path to the directory for saving / loading the basis set. Use '' for
the default directory. If None, the basis sets will not be loaded from or saved to disk.

• verbose (bool) – print some debug information

Returns
M – matrix of the Abel transform (forward or inverse)

Return type
n × n numpy array

abel.daun.cache_cleanup(select='all')
Utility function.

Frees the memory caches created by get_bs_cached(). This is usually pointless, but might be required after
working with very large images, if more RAM is needed for further tasks.

Parameters
select (str) – selects which caches to clean:

'all' (default)
everything, including basis set

'inverse'
only inverse transform

Return type
None

abel.daun.basis_dir_cleanup(basis_dir='')
Utility function.

Deletes basis sets saved on disk.

Parameters
basis_dir (str or None) – absolute or relative path to the directory with saved basis sets. Use ''
for the default directory. None does nothing.

Return type
None

2.5 abel.direct module

abel.direct.direct_transform(fr, dr=None, r=None, direction='inverse', derivative=<function gradient>,
int_func=<function trapz>, correction=True, backend='C', **kwargs)

This algorithm performs a direct computation of the Abel transform integrals. When correction=False, the pixel
at the lower bound of the integral (where y=r) is skipped, which causes a systematic error in the Abel transform.
However, if correction=True is used, then an analytical transform transform is applied to this pixel, which makes
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the approximation that the function is linear across this pixel. With correction=True, the Direct method produces
reasonable results.

The Direct method is implemented in both Python and a compiled C version using Cython, which is much faster.
The implementation can be selected using the backend argument. If the C-backend is not available, you must
re-install PyAbel with Numpy, Cython, and a C-compiler already installed.

By default, integration at all other pixels is performed using the trapezoidal rule.

Parameters

• fr (1D or 2D numpy array) – input array to which direct/inverse Abel transform will be
applied. For a 2D array, the first dimension is assumed to be the z axis and the second the r
axis.

• dr (float) – spatial mesh resolution (optional, default to 1.0)

• r (1D ndarray) – the spatial mesh (optional). Unusually, direct_transform should, in princi-
ple, be able to handle non-uniform data. However, this has not been regorously tested.

• direction (string) – Determines if a forward or inverse Abel transform will be applied. can
be ‘forward’ or ‘inverse’.

• derivative (callable) – a function that can return the derivative of the fr array with respect
to r. (only used in the inverse Abel transform).

• int_func (function) – This function is used to complete the integration. It should resemble
np.trapz, in that it must be callable using axis=, x=, and dx= keyword arguments.

• correction (boolean) – If False the pixel where the weighting function has a singular value
(where r==y) is simply skipped, causing a systematic under-estimation of the Abel transform.
If True, integration near the singular value is performed analytically, by assuming that the
data is linear across that pixel. The accuracy of this approximation will depend on how the
data is sampled.

• backend (string) – There are currently two implementations of the Direct transform, one in
pure Python and one in Cython. The backend paremeter selects which method is used. The
Cython code is converted to C and compiled, so this is faster. Can be ‘C’ or ‘python’ (case
insensitive). ‘C’ is the default, but ‘python’ will be used if the C-library is not available.

Returns
out – with either the direct or the inverse abel transform.

Return type
1d or 2d numpy array of the same shape as fr

abel.direct.is_uniform_sampling(r)
Returns True if the array is uniformly spaced to within 1e-13. Otherwise False.

2.6 abel.hansenlaw module

abel.hansenlaw.hansenlaw_transform(image, dr=1, direction='inverse', hold_order=0, **kwargs)
Forward/Inverse Abel transformation using the algorithm from

E. W. Hansen, “Fast Hankel transform algorithm”, IEEE Trans. Acoust. Speech Signal Proc. 33, 666–671 (1985)

and

E. W. Hansen, P.-L. Law, “Recursive methods for computing the Abel transform and its inverse”, J. Opt. Soc.
Am. A 2, 510–520 (1985).
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This function performs the Hansen–Law transform on only one “right-side” image:

Abeltrans = abel.hansenlaw.hansenlaw_transform(image, direction='inverse')

Note: Image should be a right-side image, like this:

+-------- +--------+
| * | * |
| * | * | <---- im
| * | * |
+-------- o--------+
| * | * |
| * | * |
| * | * |
+-------- +--------+

In accordance with all PyAbel methods the image origin o is defined to be mid-pixel i.e. an odd number of
columns, for the full image.

For the full image transform, use the abel.Transform .

Inverse Abel transform:

iAbel = abel.Transform(image, method='hansenlaw').transform

Forward Abel transform:

fAbel = abel.Transform(image, direction='forward', method='hansenlaw').transform

Parameters

• image (1D or 2D numpy array) – Right-side half-image (or quadrant). See figure below.

• dr (float) – Sampling size, used for Jacobian scaling. Default: 1 (appliable for pixel images).

• direction (string ‘forward’ or ‘inverse’) – forward or inverse Abel transform. Default:
‘inverse’.

• hold_order (int 0 or 1) – The order of the hold approximation, used to evaluate the state
equation integral. 0 assumes a constant intensity across a pixel (between grid points) for the
driving function (the image gradient for the inverse transform, or the original image, for the
forward transform). 1 assumes a linear intensity variation between grid points, which may
yield a more accurate transform for some functions (see PR 211). Default: 0.

Returns
aim – forward/inverse Abel transform half-image

Return type
1D or 2D numpy array
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2.7 abel.linbasex module

abel.linbasex.linbasex_transform(IM, basis_dir=None, proj_angles=[0, 1.5707963267948966], legendre_
orders=[0, 2], radial_step=1, smoothing=0, rcond=0.0005,
threshold=0.2, return_Beta=False, clip=0, norm_range=(0, -1),
direction='inverse', verbose=False, dr=None)

Wrapper function for linbasex to process a single image quadrant in the upper right orientation (Q0). Is not
applicable to images with odd Legendre orders.

Parameters not described below are passed directly to linbasex_transform_full().

Parameters

• IM (numpy 2D array) – upper right quadrant of the image data, must be square in shape

• return_Beta (bool) – in addition to the transformed image, return the radial, Beta and
projections arrays

• dr (any) – dummy variable for call compatibility with the other methods

Returns

• inv_IM (numpy 2D array) – upper right quadrant of the inverse Abel transformed image

• radial (numpy 1D array) – (only if return_Beta = True) radii of each Newton sphere

• Beta (numpy 2D array) – (only if return_Beta = True) contributions of each spherical har-
monic 𝑌𝑖0 to the 3D distribution contain all the information one can get from an experiment.
For the case legendre_orders = [0, 2]:

Beta[0] vs radial is the speed distribution

Beta[1] vs radial is the anisotropy of each Newton sphere

• projections (numpy 2D array) – (only if return_Beta = True) projection profiles at angles
proj_angles

abel.linbasex.linbasex_transform_full(IM, basis_dir=None, proj_angles=[0, 1.5707963267948966],
legendre_orders=[0, 2], radial_step=1, smoothing=0,
rcond=0.0005, threshold=0.2, clip=0, return_Beta=<deprecated>,
norm_range=(0, -1), direction='inverse', verbose=False)

Inverse Abel transform using 1D projections of images.

Th. Gerber, Yu. Liu, G. Knopp, P. Hemberger, A. Bodi, P. Radi, Ya. Sych, “Charged particle velocity map image
reconstruction with one-dimensional projections of spherical functions”, Rev. Sci. Instrum. 84, 033101 (2013).

Lin-Basex models the image using a sum of Legendre polynomials at each radial pixel. As such, it should only
be applied to situations that can be adequately represented by Legendre polynomials, i.e., images that feature
spherical-like structures. The reconstructed 3D object is obtained by adding all the contributions, from which
slices are derived.

This function operates on the whole image.

Parameters

• IM (numpy 2D array) – image data must have square shape of odd size

• basis_dir (str or None) – path to the directory for saving / loading the basis sets. Use '' for
the default directory. If None (default), the basis set will not be loaded from or saved to disk.

• proj_angles (list of float) – projection angles, in radians (default [0, 𝜋/2]) e.g. [0, 𝜋/2] or
[0, 0.955, 𝜋/2] or [0, 𝜋/4, 𝜋/2, 3𝜋/4]
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• legendre_orders (list of int) – orders of Legendre polynomials to be used as the expansion

– even polynomials [0, 2, . . . ] gerade

– odd polynomials [1, 3, . . . ] ungerade

– all orders [0, 1, 2, . . . ].

In a single-photon experiment there are only anisotropies up to second order. The interaction
of 4 photons (four-wave mixing) yields anisotropies up to order 8.

• radial_step (int) – number of pixels per Newton sphere (default 1)

• smoothing (float) – convolve Beta array with a Gaussian function of 1/𝑒 halfwidth equal to
smoothing.

• rcond (float) – (default 0.0005) scipy.linalg.lstsq() fit conditioning value. Use 0 to
switch conditioning off. Note: In the presence of noise the equation system may be ill-posed.
Increasing rcond smoothes the result, lowering it beyond a minimum renders the solution
unstable. Tweak rcond to get a “reasonable” solution with acceptable resolution.

• threshold (float) – threshold for normalization of higher-order Newton spheres (default 0.2):
if Beta[0] < threshold, the associated Beta[j] for all j ⩾ 1 are set to zero

• clip (int) – clip first vectors (smallest Newton spheres) to avoid singularities (default 0)

• norm_range (tuple of int) – (low, high) normalization of Newton spheres, maximum in
range Beta[0, low:high]. Note: Beta[0, i], the total number of counts integrated over sphere
i, becomes 1.

• direction (str) – Abel transform direction. Only “inverse” is implemented.

• verbose (bool) – print information about processing (normally used for debugging)

Returns

• inv_IM (numpy 2D array) – inverse Abel transformed image

• radial (numpy 1D array) – radii of each Newton sphere

• Beta (numpy 2D array) – contributions of each spherical harmonic 𝑌𝑖0 to the 3D distribution
contain all the information one can get from an experiment. For the case legendre_orders
= [0, 2]:

Beta[0] vs radial is the speed distribution

Beta[1] vs radial is the anisotropy of each Newton sphere

• projections (numpy 2D array) – projection profiles at angles proj_angles

abel.linbasex.int_beta(Beta, radial_step=1, threshold=0.1, regions=None)
Integrate beta over a range of Newton spheres.

Warning: This function is deprecated and will be remove in the future. See issue #356.

For integrating the speed distribution and averaging the anisotropy, please use mean_beta().

Parameters

• Beta (numpy array) – Newton spheres

• radial_step (int) – number of pixels per Newton sphere (default 1)

• threshold (float) – threshold for normalisation of higher orders, 0.0 . . . 1.0.
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• regions (list of tuple radial ranges) – [(min0, max0), (min1, max1), . . . ]

Returns
Beta_in – integrated normalized Beta array [Newton sphere, region]

Return type
numpy array

abel.linbasex.mean_beta(radial, Beta, regions)
Integrate normalized intensity (Beta[0]) and perform intensity-weighted averaging of anisotropy (Beta[1:])
over ranges of Newton spheres.

Parameters

• radial (numpy 1D array) – radii of Newton spheres

• Beta (numpy 2D array) – speed and anisotropy distribution from linbasex_transform_
full()

• regions (list of tuple of int) – radial ranges [(min0, max0), (min1, max1), . . . ]. Note that in-
clusion of regions where Beta[0] is below threshold set in linbasex_transform_full()
will bias the mean anisotropies towards zero.

Returns
Beta_mean – overall intensity (Beta_mean[0]) and mean anisotropy values (Beta_mean[1:])
in each region

Return type
2D numpy array

abel.linbasex.get_bs_cached(cols, basis_dir=None, legendre_orders=[0, 2], proj_angles=[0,
1.5707963267948966], radial_step=1, clip=0, verbose=False)

load basis set from disk, generate and store if not available.

Checks whether file: linbasex_basis_{cols}_{legendre_orders}_{proj_angles}_{radial_step}_
{clip}*.npy is present in basis_dir

Either, read basis array or generate basis, saving it to the file.

Parameters

• cols (int) – width of image

• basis_dir (str or None) – path to the directory for saving / loading the basis. Use '' for the
default directory. If None, the basis set will not be loaded from or saved to disk.

• legendre_orders (list) – default [0, 2] = 0 order and 2nd order polynomials

• proj_angles (list) – default [0, np.pi/2] in radians

• radial_step (int) – pixel grid size, default 1

• clip (int) – image edge clipping, default 0 pixels

• verbose (boolean) – print information for debugging

Returns

• D (tuple (B, Bpol)) – of ndarrays B (pol, proj, cols, cols) Bpol (pol, proj)

• file.npy (file) – saves basis to file name linbasex_basis_{cols}_{legendre_orders}_
{proj_angles}_{radial_step}_{clip}.npy
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abel.linbasex.cache_cleanup()

Utility function.

Frees the memory caches created by get_bs_cached(). This is usually pointless, but might be required after
working with very large images, if more RAM is needed for further tasks.

Parameters
None

Return type
None

abel.linbasex.basis_dir_cleanup(basis_dir='')
Utility function.

Deletes basis sets saved on disk.

Parameters
basis_dir (str or None) – relative or absolute path to the directory with saved basis sets. Use ''
for the default directory. None does nothing.

Return type
None

2.8 abel.onion_bordas module

abel.onion_bordas.onion_bordas_transform(IM, dr=1, direction='inverse', shift_grid=True, **kwargs)
Onion peeling (or back projection) inverse Abel transform.

This algorithm was adapted by Dan Hickstein from the original Matlab implementation, created by Chris Rallis
and Eric Wells of Augustana University, and described in

C. E. Rallis, T. G. Burwitz, P. R. Andrews, M. Zohrabi, R. Averin, S. De, B. Bergues, B. Jochim, A. V. Voznyuk,
N. Gregerson, B. Gaire, I. Znakovskaya, J. McKenna, K. D. Carnes, M. F. Kling, I. Ben-Itzhak, E. Wells, “In-
corporating real time velocity map image reconstruction into closed-loop coherent control”, Rev. Sci. Instrum.
85, 113105 (2014).

The algorithm actually originates from

C. Bordas, F. Paulig, “Photoelectron imaging spectrometry: Principle and inversion method”, Rev. Sci. Instrum.
67, 2257–2268 (1996).

This function operates on the “right side” of an image. i.e. it works on just half of a cylindrically symmetric
image. Unlike the other transforms, the image origin should be at the left edge, not mid-pixel. This corresponds
to an even-width full image.

However, shift_grid=True (default) provides the typical behavior, where the image origin corresponds to the
pixel center in the 0th column.

To perform a onion-peeling transorm on a whole image, use

abel.Transform(image, method='onion_bordas').transform

Parameters

• IM (1D or 2D numpy array) – right-side half-image (or quadrant)

• dr (float) – sampling size (=1 for pixel images), used for Jacobian scaling. The resulting
inverse transform is simply scaled by 1/dr.
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• direction (str) – only the inverse transform is currently implemented.

• shift_grid (bool) – place the image origin on the grid (left edge) by shifting the image 1/2
pixel to the left.

Returns
AIM – the inverse Abel transformed half-image

Return type
1D or 2D numpy array

2.9 abel.rbasex module

abel.rbasex.rbasex_transform(IM, origin='center', rmax='MIN', order=2, odd=False, weights=None,
direction='inverse', reg=None, out='same', basis_dir=None, verbose=False)

rBasex Abel transform for velocity-mapping images, operating in polar coordinates.

This function takes the input image and outputs its forward or inverse Abel transform as an image and its radial
distributions.

The origin, rmax, order, odd and weights parameters are passed to abel.tools.vmi.Distributions, so
see its documentation for their detailed descriptions.

Parameters

• IM (m × n numpy array) – the image to be transformed

• origin (tuple of int or str) – image origin, explicit in the (row, column) format, or as a location
string (by default, the image center)

• rmax (int or string) – largest radius to include in the transform (by default, the largest radius
with at least one full quadrant of data)

• order (int) – highest angular order present in the data, ≥ 0 (by default, 2). Working with
very high orders (≳ 15) can result in excessive noise, especially at small radii and for narrow
peaks.

• odd (bool) – include odd angular orders (by default is False, but is enabled automatically if
order is odd)

• weights (m × n numpy array, optional) – weighting factors for each pixel. The array shape
must match the image shape. Parts of the image can be excluded from analysis by assigning
zero weights to their pixels. By default is None, which applies equal weight to all pixels.

• direction (str: 'forward' or 'inverse') – type of Abel transform to be performed (by
default, inverse)

• reg (None or str or tuple (str, float), optional) – regularization to use for inverse Abel trans-
form. None (default) means no regularization, a string selects a non-parameterized regu-
larization method, and parameterized methods are selected by a tuple (method, strength).
Available methods are:

('L2', strength):
Tikhonov 𝐿2 regularization with strength as the square of the Tikhonov factor. This is the
same as “Tikhonov regularization” used in BASEX, with almost identical effects on the
radial distributions.

('diff', strength):
Tikhonov regularization with the difference operator (approximation of the derivative)
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multiplied by the square root of strength as the Tikhonov matrix. This tends to produce
less blurring, but more negative overshoots than 'L2'.

('SVD', strength):
truncated SVD (singular value decomposition) with N = strength × rmax largest singular
values removed for each angular order. This mimics the approach proposed (but in fact
not used) in pBasex. Not recommended due to generally poor results.

'pos':
non-parameterized method, finds the best (in the least-squares sense) solution with non-
negative cos𝑛 𝜃 sin𝑚 𝜃 terms (see cossin()). For order = 0, 1, and 2 (with odd = False)
this is equivalent to 𝐼(𝑟, 𝜃) ⩾ 0; for higher orders this assumption is stronger than 𝐼 ⩾ 0
and corresponds to no interference between different multiphoton channels. Not imple-
mented for odd orders > 1.

Notice that this method is nonlinear, which also means that it is considerably slower than
the linear methods and the transform operator cannot be cached.

In all cases, strength = 0 provides no regularization. For the Tikhonov methods,
strength ~ 100 is a reasonable value for megapixel images. For truncated SVD, strength
must be < 1; strength ~ 0.1 is a reasonable value; strength ~ 0.5 can produce noticeable
ringing artifacts. See the full description and examples there.

• out (str or None) – shape of the output image:

'same' (default):
same shape and origin as the input

'fold' (fastest):
Q0 (upper right) quadrant (for odd=False) or right half (for odd=True) up to rmax, but
limited to the largest input-image quadrant (or half)

'unfold':
like 'fold', but symmetrically “unfolded” to all 4 quadrants

'full':
all pixels with radii up to rmax

'full-unique':
the unique part of 'full': Q0 (upper right) quadrant for odd=False, right half for
odd=True

None:
no image (recon will be None). Can be useful to avoid unnecessary calculations when
only the transformed radial distributions (distr) are needed.

• basis_dir (str, optional) – path to the directory for saving / loading the basis set (useful only
for the inverse transform without regularization; time savings in other cases are small and
might be negated by the disk-access overhead). Use '' for the default directory. If None
(default), the basis set will not be loaded from or saved to disk.

• verbose (bool) – print information about processing (for debugging), disabled by default

Returns

• recon (2D numpy array or None) – the transformed image. Is centered and might have
different dimensions than the input image.

• distr (Distributions.Results object) – the object from which various distributions for the
transformed image can be retrieved, see abel.tools.vmi.Distributions.Results
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abel.rbasex.get_bs_cached(Rmax, order=2, odd=False, direction='inverse', reg=None, valid=None, basis_
dir=None, verbose=False)

Internal function.

Gets the basis set (from cache or runs computations and caches them) and calculates the transform matrix.
Loaded/calculated matrices are also cached in memory.

Parameters

• Rmax (int) – largest radius to be transformed

• order (int) – highest angular order

• odd (bool) – include odd angular orders

• direction (str: 'forward' or 'inverse') – type of Abel transform to be performed

• reg (None or str or tuple (str, float)) – regularization type and strength for inverse transform

• valid (None or bool array) – flags to exclude invalid radii from transform

• basis_dir (str, optional) – path to the directory for saving / loading the basis set. Use '' for
the default directory. If None, the basis set will not be loaded from or saved to disk.

• verbose (bool) – print some debug information

Returns
A – (Rmax + 1) × (Rmax + 1) matrices of the Abel transform (forward or inverse) for each
angular order

Return type
list of 2D numpy arrays

abel.rbasex.cache_cleanup(select='all')
Utility function.

Frees the memory caches created by get_bs_cached(). This is usually pointless, but might be required after
working with very large images, if more RAM is needed for further tasks.

Parameters
select (str) – selects which caches to clean:

all (default)
everything, including basis;

forward
forward transform;

inverse
inverse transform.

Return type
None

abel.rbasex.basis_dir_cleanup(basis_dir='')
Utility function.

Deletes basis sets saved on disk.

Parameters
basis_dir (str or None) – absolute or relative path to the directory with saved basis sets. Use ''
for the default directory. None does nothing.

Return type
None
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Chapter 3

Image processing tools

3.1 abel.tools.analytical module

class abel.tools.analytical.BaseAnalytical(n, r_max, symmetric=True, **args)
Bases: object

Base class for functions that have a known Abel transform (see GaussianAnalytical for a concrete example).
Every such class should expose the following public attributes:

r

vector of positions along the 𝑟 axis

Type
numpy array

func

the values of the original function (same shape as r for 1D functions, or same row size as r for 2D images)

Type
numpy array

abel

the values of the Abel transform (same shape as func)

Type
numpy array

mask_valid

mask (same shape as func) where the function is well smoothed/well behaved (no known artefacts in the
inverse Abel reconstuction), typically excluding the origin, the domain boundaries, and function disconti-
nuities, that can be used for unit testing.

Type
numpy array

Parameters

• n (int) – number of points along the 𝑟 axis (saved to attribute n)

• r_max (float) – maximum 𝑟 value (saved to attribute r_max)

• symmetric (boolean) – if True, the 𝑟 interval is [−r_max, r_max] (and n should be odd),
otherwise, the 𝑟 interval is [0, r_max]
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class abel.tools.analytical.StepAnalytical(n, r_max, r1, r2, A0=1.0, ratio_valid_step=1.0,
symmetric=True)

Bases: BaseAnalytical

Define a step function and calculate its analytical Abel transform:

0 r1 r2 r_max
r

0

A0
source

0 r1 r2 r_max
r

0

projection

See examples/example_basex_step.py.

Parameters

• n (int) – number of points along the r axis

• r_max (float) – range of the r interval

• symmetric (boolean) – if True, the r interval is [−r_max, r_max] (and n should be odd),
otherwise the r interval is [0, r_max]

• r1, r2 (float) – bounds of the step function for r > 0 (symmetric function is constructed for
r < 0)

• A0 (float) – height of the step

• ratio_valid_step (float) – in the benchmark take only the central ratio × 100% of the step
(exclude possible artefacts on the edges)

abel_step_analytical(r, A0, r0, r1)
Forward Abel transform of a step function located between r0 and r1, with a height A0.

Parameters

• r (1D array) – array of positions along the r axis. Must start with 0.

• A0 (float or 1D array) – height of the step. If 1D array, the height can be variable along
the z axis

• r0, r1 (float) – positions of the step along the r axis

Return type
1D array, if A0 is a float, a 2D array otherwise

sym_abel_step_1d(r, A0, r0, r1)
Produces a symmetrical analytical transform of a 1D step
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class abel.tools.analytical.Polynomial(n, r_max, r_1, r_2, c, r_0=0.0, s=1.0, reduced=False,
symmetric=True)

Bases: BaseAnalytical

Define a polynomial function and calculate its analytical Abel transform.

(See Polynomials for details and examples.)

Parameters

• n (int) – number of points along the r axis

• r_max (float) – range of the r interval

• r_1, r_2 (float) – r bounds of the polynomial function if r > 0; outside [r_1, r_2] the function
is set to zero (symmetric function is constructed for r < 0)

• c (numpy array) – polynomial coefficients in order of increasing degree: [c0, c1, c2] means
c0 + c1 r + c2 r2

• r_0 (float, optional) – origin shift: the polynomial is defined as c0 + c1 (r − r_0) + c2 (r −
r_0)2 + . . .

• s (float, optional) – r stretching factor (around r_0): the polynomial is defined as c0 + c1
(r/s) + c2 (r/s)2 + . . .

• reduced (boolean, optional) – internally rescale the r range to [0, 1]; useful to avoid floating-
point overflows for high degrees at large r (and might improve numerical accuracy)

• symmetric (boolean) – if True, the r interval is [−r_max, +r_max] (and n should be odd),
otherwise the r interval is [0, r_max]

class abel.tools.analytical.PiecewisePolynomial(n, r_max, ranges, symmetric=True)
Bases: BaseAnalytical

Define a piecewise polynomial function (sum of Polynomials) and calculate its analytical Abel transform.

Parameters

• n (int) – number of points along the r axis

• r_max (float) – range of the r interval

• ranges (iterable of unpackable) –

(list of tuples of) polynomial parameters for each piece:

[(r_1_1st, r_2_1st, c_1st),
(r_1_2nd, r_2_2nd, c_2nd),
...
(r_1_nth, r_2_nth, c_nth)]

according to Polynomial conventions. All ranges are independent (may overlap and have
gaps, may define polynomials of any degrees) and may include optional Polynomial pa-
rameters

• symmetric (boolean) – if True, the r interval is [−r_max, +r_max] (and n should be odd),
otherwise the r interval is [0, r_max]

class abel.tools.analytical.GaussianAnalytical(n, r_max, sigma=1.0, A0=1.0, ratio_valid_sigma=2.0,
symmetric=True)

Bases: BaseAnalytical
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Define a gaussian function and calculate its analytical Abel transform. See examples/example_basex_
gaussian.py.

Parameters

• n (int) – number of points along the r axis

• r_max (float) – range of the r interval

• sigma (float) – sigma parameter for the gaussian

• A0 (float) – amplitude of the gaussian

• ratio_valid_sigma (float) – in the benchmark take only the range 0 < r < ration_valid_sigma
* sigma (exclude possible artefacts on the axis and the possibly clipped tail)

• symmetric (boolean) – if True, the r interval is [-r_max, r_max] (and n should be odd),
otherwise, the r interval is [0, r_max]

class abel.tools.analytical.TransformPair(n, profile=5)
Bases: BaseAnalytical

Abel-transform pair analytical functions.

profiles 1–7: Table 1 of G. C.-Y. Chan, Gary M. Hieftje, “Estimation of confidence intervals for radial emissivity
and optimization of data treatment techniques in Abel inversion”, Spectrochimica Acta B 61, 31–41 (2006).

See abel.tools.transform_pairs.

Returns

• r (numpy array) – vector of positions along the r axis: linspace(0, 1, n)

• dr (float) – radial interval

• func (numpy array) – values of the original function (same shape as r)

• abel (numpy array) – values of the Abel transform (same shape as func)

• label (str) – name of the curve

• mask_valid (boolean array) – set all True. Used for unit tests

class abel.tools.analytical.SampleImage(n=361, name='Dribinski', sigma=None, temperature=200)
Bases: BaseAnalytical

Sample images, made up of Gaussian functions (or cubic splines, for 'O2').

Parameters

• n (integer) – image size n rows × n cols (must be odd for most purposes; even n values would
result in half-pixel centering)

• name (str) –

'Dribinski'
Sample test image used in the BASEX paper Rev. Sci. Instrum. 73, 2634 (2002), intensity
function Eq. (16) (there are some missing negative exponents in the publication).

9 Gaussian peaks with alternating anisotropies (𝛽 = −1, 0, +2), plus 1 wide background
Gaussian. Peak amplitudes are designed to produce comparable heights in the speed dis-
tribution, thus the peaks at small radii appear very intense in the image and its Abel trans-
form.
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'Gaussian'
Isotropic 2D Gaussian exp(−𝑟2/sigma2).

Its Abel transform is also a Gaussian with the same width:
√
𝜋 sigma exp(−𝑟2/sigma2).

'Gerber'
Artificial test image used in the lin-BASEX article Rev. Sci. Instrum. 84, 033101 (2013),
Table I.

8 Gaussian peaks with various intensities and anisotropies up to 4th order (𝛽4).

'O2'
Synthetic image mimicking a velocity-map image of O+ from multiphoton photodissoci-
ation/ionization O2

4ℎ𝜈−−→ O+O+ + 𝑒− at 44 444 cm−1 (225 nm)

Multiple peaks with various intensities and anisotropies; see, for example, J. Chem. Phys.
107, 2357 (1997).

'Ominus' or 'O-'
Simulate the photoelectron spectrum of O− photodetachment 3𝑃𝐽 ← 2𝑃3/2,1/2.

6 transitions, triplet neutral, and doublet anion.

• sigma (float) – 1/e halfwidth of peaks in pixels, default values are: 2·rmax/180 for
'Dribinski', 2·rmax/500 for 'Ominus', rmax/3 for 'Gaussian',

√
2 (std. dev. = 1) for

'Gerber'.

For 'O2': HWHM of narrow peaks in pixels, default is 1.5 for any rmax.

• temperature (float) – anion temperature in kelvins (default: 200) for 'Ominus': anion levels
have Boltzmann population weight (2𝐽 + 1) exp[−ℎ𝑐 · 177.1 cm−1/(𝑘 · temperature)]

name

sample-image name

Type
str

transform(tol=0.0048)
Compute forward Abel transform of the image as an analytical Abel transform of its piecewise polynomial
approximation (except 'Gaussian' and 'O2', which are computed exactly).

Parameters
tol (float) – relative tolerance of the approximation (max. deviation divided by max. ampli-
tude, default: 4.8e-3 ≲ 0.5%); the resulting Abel transform is somewhat more accurate

Returns
abel – Abel-transformed image, also accessible as the abel attribute

Return type
2D numpy array

property image

Deprecated. Use func instead.

property abel

Abel transform of the image, computed (with default accuracy) only if necessary; see transform() for
details.
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3.2 abel.tools.center module

abel.tools.center.find_origin(IM, method='image_center', axes=(0, 1), verbose=False, **kwargs)
Find the coordinates of image origin, using the specified method.

Parameters

• IM (2D np.array) – image data

• method (str) – determines how the origin should be found. The options are:

image_center
the center of the image is used as the origin. The trivial result.

com
the origin is found as the center of mass.

convolution
the origin is found as the maximum of autoconvolution of the image projections along
each axis.

gaussian
the origin is extracted by a fit to a Gaussian function. This is probably only appropriate if
the data resembles a gaussian.

slice
the image is broken into slices, and these slices compared for symmetry.

• axes (int or tuple of int) – find origin coordinates: 0 (vertical), or 1 (horizontal), or (0, 1)
(both vertical and horizontal).

Returns
out – coordinates of the origin of the image in the (row, column) format. For coordinates not in
axes, the center of the image is returned.

Return type
(float, float)

abel.tools.center.center_image(IM, method='com', odd_size=True, square=False, axes=(0, 1),
crop='maintain_size', order=3, verbose=False, center=<deprecated>,
**kwargs)

Center image with the custom value or by several methods provided in find_origin() function.

Parameters

• IM (2D np.array) – The image data.

• method (str or tuple of float) – either a tuple (float, float), the coordinate of the origin of the
image in the (row, column) format, or a string to specify an automatic centering method:

image_center
the center of the image is used as the origin. The trivial result.

com
the origin is found as the center of mass.

convolution
the origin is found as the maximum of autoconvolution of the image projections along
each axis.
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gaussian
the origin is extracted from a fit to a Gaussian function. This is probably only appropriate
if the data resembles a gaussian.

slice
the image is broken into slices, and these slices compared for symmetry.

• odd_size (boolean) – if True, the returned image will contain an odd number of columns.
Most of the transform methods require this, so it’s best to set this to True if the image will
subsequently be Abel-transformed.

• square (bool) – if True, the returned image will have a square shape.

• crop (str) – determines how the image should be cropped. The options are:

maintain_size
return image of the same size. Some regions of the original image may be lost, and some
regions may be filled with zeros.

valid_region
return the largest image that can be created without padding. All of the returned image
will correspond to the original image. However, portions of the original image will be
lost. If you can tolerate clipping the edges of the image, this is probably the method to
choose.

maintain_data
the image will be padded with zeros such that none of the original image will be cropped.

See set_center() for examples.

• axes (int or tuple of int) – center image with respect to axis 0 (vertical), 1 (horizontal), or both
axes (0, 1) (default). When specifying an explicit origin in method, unused coordinates
can also be passed as None, for example, method=(row, None) or method=(None, col).

• order (int) – interpolation order, see set_center() for details.

Returns
out – centered image

Return type
2D np.array

abel.tools.center.set_center(data, origin, crop='maintain_size', axes=(0, 1), order=3, verbose=False,
center=<deprecated>)

Move image origin to mid-point of image (rows // 2, cols // 2).

Parameters

• data (2D np.array) – the image data

• origin (tuple of float) – (row, column) coordinates of the image origin. Coordinates set to
None are ignored.

• crop (str) – determines how the image should be cropped. The options are:

maintain_size (default)
return image of the same size. Some regions of the original image may be lost and some
regions may be filled with zeros.

valid_region
return the largest image that can be created without padding. All of the returned image
will correspond to the original image. However, portions of the original image will be
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lost. If you can tolerate clipping the edges of the image, this is probably the method to
choose.

maintain_data
the image will be padded with zeros such that none of the original image will be cropped.

Examples:

original data maintain_size valid_region maintain_data

• axes (int or tuple of int) – center image with respect to axis 0 (vertical), 1 (horizontal), or
both axes (0, 1) (default).

• order (int) – interpolation order (0–5, default is 3) for centering with fractional origin.
Lower orders work faster; order = 0 (also implied for integer origin) means a whole-pixel
shift without interpolation and is much faster.

• verbose (bool) – print some information for debugging

Returns
out – centered image

Return type
2D np.array

abel.tools.center.find_origin_by_center_of_mass(IM, axes=(0, 1), verbose=False, round_output=False,
**kwargs)

Find image origin by calculating its center of mass.

Parameters

• IM (numpy 2D array) – image data

• axes (int or tuple) – find origin coordinates: 0 (vertical), or 1 (horizontal), or (0, 1) (both
vertical and horizontal).

• round_output (bool) – if True, the coordinates are rounded to integers; otherwise they are
floats.

Returns
origin – (row, column)

Return type
(float, float)

abel.tools.center.find_origin_by_convolution(IM, axes=(0, 1), projections=False, **kwargs)
Find the image origin as the maximum of autoconvolution of its projections along each axis.

Code from the linbasex juptyer notebook.

Parameters
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• IM (numpy 2D array) – image data

• projections (bool) – if this parameter is True, the autoconvoluted projections along both
axes will be returned after the origin.

• axes (int or tuple) – find origin coordinates: 0 (vertical), or 1 (horizontal), or (0, 1) (both
vertical and horizontal).

Returns

origin – (row, column)

or (row, column), conv_0, conv_1

Return type
(float, float)

abel.tools.center.find_origin_by_center_of_image(IM, axes=(0, 1), verbose=False, **kwargs)
Find image origin simply as its center, from its dimensions.

Parameters

• IM (numpy 2D array) – image data

• axes (int or tuple) – has no effect

Returns
origin – (row, column)

Return type
(int, int)

abel.tools.center.find_origin_by_gaussian_fit(IM, axes=(0, 1), verbose=False, round_output=False,
**kwargs)

Find image origin by fitting the summation along rows and columns of the data to two 1D Gaussian functions.

Parameters

• IM (numpy 2D array) – image data

• axes (int or tuple) – find origin coordinates: 0 (vertical), or 1 (horizontal), or (0, 1) (both
vertical and horizontal).

• round_output (bool) – if True, the coordinates are rounded to integers; otherwise they are
floats.

Returns
origin – (row, column)

Return type
(float, float)

abel.tools.center.axis_slices(IM, radial_range=(0, -1), slice_width=10)
Returns vertical and horizontal slice profiles, summed across slice_width.

Parameters

• IM (2D np.array) – image data

• radial_range (tuple of float) – (rmin, rmax) range to limit data

• slice_width (int) – width of the image slice, default 10 pixels

Returns
top, bottom, left, right – image slices oriented in the same direction
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Return type
1D np.arrays shape (rmin:rmax, 1)

abel.tools.center.find_origin_by_slice(IM, axes=(0, 1), slice_width=10, radial_range=(0, -1),
axis=<deprecated>, **kwargs)

Find the image origin by comparing opposite sides.

Parameters

• IM (2D np.array) – the image data

• slice_width (integer) – Sum together this number of rows (cols) to improve signal, default
10.

• radial_range (tuple) – (rmin, rmax): radial range [rmin:rmax] for slice profile compari-
son.

• axes (int or tuple) – find origin coordinates: 0 (vertical), or 1 (horizontal), or (0, 1) (both
vertical and horizontal).

Returns
origin – (row, column)

Return type
(float, float)

abel.tools.center.find_center(IM, center='image_center', square=False, verbose=False, **kwargs)
Deprecated function. Use find_origin() instead.

abel.tools.center.find_center_by_center_of_mass(IM, verbose=False, round_output=False, **kwargs)
Deprecated function. Use find_origin_by_center_of_mass() instead.

abel.tools.center.find_center_by_convolution(IM, **kwargs)
Deprecated function. Use find_origin_by_convolution() instead.

abel.tools.center.find_center_by_center_of_image(IM, verbose=False, **kwargs)
Deprecated function. Use find_origin_by_center_of_image() instead.

abel.tools.center.find_center_by_gaussian_fit(IM, verbose=False, round_output=False, **kwargs)
Deprecated function. Use find_origin_by_gaussian_fit() instead.

abel.tools.center.find_image_center_by_slice(IM, slice_width=10, radial_range=(0, -1), axis=(0, 1),
**kwargs)

Deprecated function. Use find_origin_by_slice() instead.

3.3 abel.tools.circularize module

abel.tools.circularize.circularize_image(IM, method='lsq', origin=None, radial_range=None, dr=0.5,
dt=0.5, smooth=<deprecated>, ref_angle=None,
inverse=False, return_correction=False, tol=0,
center=<deprecated>)

Corrects image distortion on the basis that the structure should be circular.

This is a simplified radial scaling version of the algorithm described in J. R. Gascooke, S. T. Gibson, W. D.
Lawrance, “A ‘circularisation’ method to repair deformations and determine the centre of velocity map images”,
J. Chem. Phys. 147, 013924 (2017).
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This function is especially useful for correcting the image obtained with a velocity-map-imaging spectrometer,
in the case where there is distortion of the Newton sphere (ring) structure due to an imperfect electrostatic lens
or stray electromagnetic fields. The correction allows the highest-resolution 1D photoelectron distribution to be
extracted.

The algorithm splits the image into “slices” at many different angles (set by dt) and compares the radial intensity
profile of adjacent slices. A scaling factor is found which aligns each slice profile with the previous slice. The
image is then corrected using a spline function that smoothly connects the discrete scaling factors as a continuous
function of angle.

This circularization algorithm should only be applied to a well-centered image, otherwise use the origin keyword
(described below) to center it.

Parameters

• IM (numpy 2D array) – Image to be circularized.

• method (str) – Method used to determine the radial correction factor to align slice profiles:

argmax
compare intensity-profile.argmax() of each radial slice. This method is quick and reliable,
but it assumes that the radial intensity profile has an obvious maximum. The positioning
is limited to the nearest pixel.

lsq
minimize the difference between a slice intensity-profile with its adjacent slice. This
method is slower and may fail to converge, but it may be applied to images with any
(circular) structure. It aligns the slices with sub-pixel precision.

• origin (float tuple, str or None) – Pre-center image using abel.tools.center.center_
image(). May be an explicit (row, column) tuple or a method name: 'com',
'convolution', 'gaussian;, 'image_center', 'slice'. None (default) assumes that
the image is already centered.

• radial_range (tuple or None) – Limit slice comparison to the radial range tuple (rmin, rmax),
in pixels, from the image origin. Use to determine the distortion correction associated with
particular peaks. It is recommended to select a region of your image where the signal-to-
noise ratio is highest, with sharp persistent (in angle) features.

• dr (float) – Radial grid size for the polar coordinate image, default = 0.5 pixel. This is passed
to abel.tools.polar.reproject_image_into_polar().

Small values may improve the distortion correction, which is often of sub-pixel dimensions,
at the cost of reduced signal to noise for the slice intensity profile. As a general rule, dr
should be significantly smaller than the radial “feature size” in the image.

• dt (float) – Angular grid size. This sets the number of radial slices, given by 2𝜋/𝑑𝑡. Default =
0.1, ~ 63 slices. More slices, using smaller dt, may provide a more detailed angular variation
of the correction, at the cost of greater signal to noise in the correction function.

Also passed to abel.tools.polar.reproject_image_into_polar().

• smooth (float) – Deprecated, use tol instead. The relationship is smooth = Nangles × tol2,
where Nangles is the number of slices (see dt).

• ref_angle (None or float) – Reference angle for which radial coordinate is unchanged. Angle
varies between −𝜋 and 𝜋, with zero angle vertical.

None uses numpy.mean() of the radial correction function, which attempts to maintain the
same average radial scaling. This approximation is likely valid, unless you know for certain
that a specific angle of your image corresponds to an undistorted image.
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• inverse (bool) – Apply an inverse Abel transform to the polar-coordinate image, to remove
the background intensity. This may improve the signal-to-noise ratio, allowing the weaker
intensity featured to be followed in angle.

Note that this step is only for the purposes of allowing the algorithm to better follow peaks
in the image. It does not affect the final image that is returned, except for (hopefully) slightly
improving the precision of the distortion correction.

• return_correction (bool) – Additional outputs, as describe below.

• tol (float) – Root-mean-square (RMS) fitting tolerance for the spline function. At the default
zero value, the spline interpolates between the discrete scaling factors. At larger values, a
smoother spline is found such that its RMS deviation from the discrete scaling factors does
not exceed this number. For example, tol=0.01 means 1% RMS tolerance for the radial
scaling correction. At very large tolerances, the spline degenerates to a constant, the average
of the discrete scaling factors.

Typically, tol may remain zero (use interpolation), but noisy data may require some smooth-
ing, since the found discrete scaling factors can have noticeable errors. To examine the rela-
tive scaling factors and how well they are represented by the spline function, use the option
return_correction=True.

Returns

• IMcirc (numpy 2D array) – Circularized version of the input image, same size as input.

• The following values are returned if return_correction=True

• angles (numpy 1D array) – Mid-point angle (radians) of each image slice.

• radial_correction (numpy 1D array) – Radial correction scale factor at each angular slice.

• radial_correction_function (function(numpy 1D array)) – Function that may be used to
evaluate the radial correction at any angle.

abel.tools.circularize.circularize(IM, radial_correction_function, ref_angle=None)
Remap image from its distorted grid to the true cartesian grid.

Parameters

• IM (numpy 2D array) – Original image

• radial_correction_function (function(numpy 1D array)) – A function returning the radial
correction for a given angle. It should accept a numpy 1D array of angles.

• ref_angle (None or float) – Reference angle at which the radial correction function is renor-
malized to unity. If None, the angular average is used for renormalization.

abel.tools.circularize.correction(polarIMTrans, angles, radial, method)
Determines a radial correction factors that align an angular slice radial intensity profile with its adjacent (previ-
ous) slice profile.

Parameters

• polarIMTrans (numpy 2D array) – Polar coordinate image, transposed (𝜃, 𝑟) so that each
row is a single angle.

• angles (numpy 1D array) – Angle coordinates for one row of polarIMTrans.

• radial (numpy 1D array) – Radial coordinates for one column of polarIMTrans.

• method (str) –
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argmax
radial correction factor from position of maximum intensity.

lsq
least-squares determine a radial correction factor that will align a radial intensity profile
with the previous, adjacent slice.

Returns
radcorr – radial correction factors for angles

Return type
numpy 1D array

3.4 abel.tools.math module

abel.tools.math.gradient(f , x=None, dx=1, axis=-1)
Return the gradient of 1 or 2-dimensional array. The gradient is computed using central differences in the interior
and first differences at the boundaries.

Irregular sampling is supported (it isn’t supported by np.gradient)

Parameters

• f (1d or 2d numpy array) – Input array.

• x (array_like, optional) – Points where the function f is evaluated. It must be of the same
length as f.shape[axis]. If None, regular sampling is assumed (see dx)

• dx (float, optional) – If x is None, spacing given by dx is assumed. Default is 1.

• axis (int, optional) – The axis along which the difference is taken.

Returns
out – Returns the gradient along the given axis.

Return type
array_like

Notes

To-Do: implement smooth noise-robust differentiators for use on experimental data. http://www.holoborodko.
com/pavel/numerical-methods/numerical-derivative/smooth-low-noise-differentiators/

abel.tools.math.gaussian(x, a, mu, sigma, c)
Gaussian function

𝑓(𝑥) = 𝑎𝑒−(𝑥−𝜇)2/(2𝜎2) + 𝑐

Parameters

• x (1D np.array) – coordinate

• a (float) – the height of the curve’s peak

• mu (float) – the position of the center of the peak

• sigma (float) – the standard deviation, sometimes called the Gaussian RMS width

• c (float) – non-zero background
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Returns
out – the Gaussian profile

Return type
1D np.array

abel.tools.math.guess_gaussian(x)
Find a set of better starting parameters for Gaussian function fitting

Parameters
x (1D np.array) – 1D profile of your data

Returns
out – estimated value of (a, mu, sigma, c)

Return type
tuple of float

abel.tools.math.fit_gaussian(x)
Fit a Gaussian function to x and return its parameters

Parameters
x (1D np.array) – 1D profile of your data

Returns
out – (a, mu, sigma, c)

Return type
tuple of float

abel.tools.math.guss_gaussian(x)
Deprecated function. Use guess_gaussian() instead.

3.5 abel.tools.polar module

abel.tools.polar.reproject_image_into_polar(data, origin=None, Jacobian=False, dr=1, dt=None)
Reprojects a 2D numpy array (data) into a polar coordinate system, with the pole placed at origin and the angle
measured clockwise from the upward direction. The resulting array has rows corresponding to the radial grid,
and columns corresponding to the angular grid.

Parameters

• data (2D np.array) – the image array

• origin (tuple or None) – (row, column) coordinates of the image origin. If None, the geo-
metric center of the image is used.

• Jacobian (bool) – Include r intensity scaling in the coordinate transform. This should be
included to account for the changing pixel size that occurs during the transform.

• dr (float) – radial coordinate spacing for the grid interpolation. Tests show that there is not
much point in going below 0.5.

• dt (float or None) – angular coordinate spacing (in radians). If None, the number of angular
grid points will be set to the largest dimension (the height or the width) of the image.

Returns

• output (2D np.array) – the polar image (r, theta)

• r_grid (2D np.array) – meshgrid of radial coordinates
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• theta_grid (2D np.array) – meshgrid of angular coordinates

Notes

Adapted from: https://stackoverflow.com/questions/3798333/image-information-along-a-polar-coordinate-system

abel.tools.polar.index_coords(data, origin=None)
Creates x and y coordinates for the indices in a numpy array, relative to the origin, with the x axis going to the
right, and the y axis going up.

Parameters

• data (numpy array) – 2D data. Only the array shape is used.

• origin (tuple or None) – (row, column). Defaults to the geometric center of the image.

Returns
x, y

Return type
2D numpy arrays

abel.tools.polar.cart2polar(x, y)
Transform Cartesian coordinates to polar.

Parameters
x, y (floats or arrays) – Cartesian coordinates

Returns
r, theta – Polar coordinates

Return type
floats or arrays

abel.tools.polar.polar2cart(r, theta)
Transform polar coordinates to Cartesian.

Parameters
r, theta (floats or arrays) – Polar coordinates

Returns
x, y – Cartesian coordinates

Return type
floats or arrays

3.6 abel.tools.polynomial module

See Polynomials for details and examples.

class abel.tools.polynomial.BasePolynomial

Bases: object

Abstract base class for polynomials. Implements multiplication and division by numbers. (Addition and sub-
traction of polynomials are not implemented because they are meaningful only for polynomials generated on the
same grid. Use Piecewise... classes for sums of polynomials.)
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func

values of the original function

Type
numpy array

abel

values of the Abel transform

Type
numpy array

copy()

Return an independent copy.

class abel.tools.polynomial.Polynomial(r, r_min, r_max, c, r_0=0.0, s=1.0, reduced=False)
Bases: BasePolynomial

Polynomial function and its Abel transform.

Parameters

• r (numpy array) – r values at which the function is generated (and x values for its Abel
transform); must be non-negative and in ascending order

• r_min, r_max (float) – r domain: the function is defined as the polynomial on [r_min, r_
max] and zero outside it; 0 ≤ r_min < r_max ≲ max r (r_max might exceed maximal
r, but usually by < 1 pixel; negative r_min or r_max are allowed for convenience but are
interpreted as 0)

• c (numpy array) – polynomial coefficients in order of increasing degree: [c0, c1, c2] means
c0 + c1 r + c2 r2

• r_0 (float, optional) – origin shift: the polynomial is defined as c0 + c1 (r − r_0) + c2 (r −
r_0)2 + . . .

• s (float, optional) – r stretching factor (around r_0): the polynomial is defined as c0 + c1 ((r
− r_0)/s) + c2 ((r − r_0)/s)2 + . . .

• reduced (boolean, optional) – internally rescale the r range to [0, 1]; useful to avoid floating-
point overflows for high degrees at large r (and might improve numeric accuracy)

class abel.tools.polynomial.PiecewisePolynomial(r, ranges)
Bases: BasePolynomial

Piecewise polynomial function (sum of Polynomials) and its Abel transform.

Parameters

• r (numpy array) – r values at which the function is generated (and x values for its Abel
transform)

• ranges (iterable of unpackable) –

(list of tuples of) polynomial parameters for each piece:

[(r_min_1st, r_max_1st, c_1st),
(r_min_2nd, r_max_2nd, c_2nd),
...
(r_min_nth, r_max_nth, c_nth)]
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according to Polynomial conventions. All ranges are independent (may overlap and have
gaps, may define polynomials of any degrees) and may include optional Polynomial pa-
rameters

p

Polynomial objects corresponding to each piece

Type
list of Polynomial

copy()

Make an independent copy.

class abel.tools.polynomial.SPolynomial(r, cos, r_min, r_max, c, r_0=0.0, s=1.0)
Bases: BasePolynomial

Bivariate polynomial function
∑︀

𝑚𝑛 𝑐𝑚𝑛𝑟
𝑚 cos𝑛 𝜃 in spherical coordinates and its Abel transform.

Parameters

• r, cos (numpy array) – r and cos 𝜃 values at which the function is generated; r must be non-
negative. Arrays for generating a 2D image can be conveniently prepared by the rcos()
function. On the other hand, the radial dependence alone (for a single cosine power) can be
obtained by supplying a 1D r array and a cos array filled with ones.

• r_min, r_max (float) – r domain: the function is defined as the polynomial on [r_min, r_
max] and zero outside it; 0 ≤ r_min < r_max ≲ max r (r_max might exceed maximal
r, but usually by < 1 pixel; negative r_min or r_max are allowed for convenience but are
interpreted as 0)

• c (2D numpy array) – polynomial coefficients for r and cos 𝜃 powers: c[m, n] is the coef-
ficient for the 𝑟𝑚 cos𝑛 𝜃 term. This array can be conveniently constructed using Angular
tools.

• r_0 (float, optional) – r domain shift: the polynomial is defined in powers of (r − r_0)
instead of r

• s (float, optional) – r stretching factor (around r_0): the polynomial is defined in powers of
(r − r_0)/s instead of r

class abel.tools.polynomial.PiecewiseSPolynomial(r, cos, ranges)
Bases: BasePolynomial

Piecewise bivariate polynomial function (sum of SPolynomials) in spherical coordinates and its Abel transform.

Parameters

• r, cos (numpy array) – r and cos 𝜃 values at which the function is generated

• ranges (iterable of unpackable) –

(list of tuples of) polynomial parameters for each piece:

[(r_min_1st, r_max_1st, c_1st),
(r_min_2nd, r_max_2nd, c_2nd),
...
(r_min_nth, r_max_nth, c_nth)]

according to SPolynomial conventions. All ranges are independent (may overlap and have
gaps, may define polynomials of any degrees) and may include optional SPolynomial pa-
rameters (r_0, s).
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abel.tools.polynomial.rcos(rows=None, cols=None, shape=None, origin=None)
Create arrays with polar coordinates 𝑟 and cos 𝜃: either from a pair of Cartesian arrays (rows, cols) with row and
column values for each point or for a uniform grid with given dimensions and origin (shape, origin).

Parameters

• rows, cols (numpy array) – arrays with respectively row and column values for each point.
Must have identical shapes (the output arrays will have the same shape), but might contain
any values. For example, can be 2D arrays with integer pixel coordinates, or with floating-
point numbers for sampling at subpixel points or on a distorted grid, or 1D arrays for sampling
along some curve.

• shape (tuple of int) – (rows, cols) – create output arrays of given shape, with values corre-
sponding to a uniform pixel grid.

• origin (tuple of float, optional) – position of the origin (𝑟 = 0) in the output array. By
default, the center of the array is used (center of the middle pixel for odd-sized dimensions;
even-sized dimensions will have a corresponding half-pixel shift).

Returns

• r (numpy array) – radii 𝑟 =
√︀

row2 + col2 for each point

• cos (numpy array) – cosines of the polar angle cos 𝜃 = −row/𝑟 for each point (by convention,
cos 𝜃 = 0 at 𝑟 = 0)

class abel.tools.polynomial.Angular(c)
Bases: object

Class helping to define angular dependences for SPolynomial and PiecewiseSPolynomial.

Supports arithmetic operations (addition, subtraction, multiplication of objects; multiplication and division by
numbers) and outer product with radial coefficients (any list-like object). For example:

[3, 0, -1] * (Angular.cos(4) + Angular.sin(4) / 2)

represents (3− 𝑟2)
(︀
cos4 𝜃 + (sin4 𝜃)/2

)︀
, producing

[[ 1.5 0. -3. 0. 4.5]
[ 0. 0. -0. 0. 0. ]
[-0.5 0. 1. 0. -1.5]]

which can be supplied as the coefficient matrix to SPolynomial. Likewise, a list of ranges for
PiecewiseSPolynomial can be prepared as an outer product with a list of (r_min, r_max, coeffs) tuples
(with optional other SPolynomial parameters), where 1D coeffs contain radial coefficients for a polynomial
segment.

Parameters
c (float or iterable of float) – list of coefficients: Angular([c0, c1, c2, ...]) means
𝑐0 cos

0 𝜃+ 𝑐1 cos
1 𝜃+ 𝑐2 cos

2 𝜃+ . . .; Angular(a) represents the isotropic distribution a·cos0 𝜃

c

coefficients for cos𝑛 𝜃 powers, passed at instantiation directly (see above) or converted from other repre-
sentations by the methods below.

Type
numpy array

classmethod cos(n)
Cosine power: Angular.cos(n) means cos𝑛 𝜃.
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classmethod sin(n)
Sine power: Angular.sin(n) means sin𝑛 𝜃 (n must be even).

classmethod cossin(m, n)
Product of cosine and sine powers: Angular.cossin(m, n) means cos𝑚 𝜃 · sin𝑛 𝜃 (n must be even).

classmethod legendre(c)
Weighted sum of Legendre polynomials in cos 𝜃: Angular.legendre([c0, c1, c2, ...]) means
𝑐0𝑃0(cos 𝜃) + 𝑐1𝑃1(cos 𝜃) + 𝑐2𝑃2(cos 𝜃) + . . .

This method is intended to be called like

Angular.legendre([1, 𝛽1, 𝛽2, ...])

where 𝛽𝑖 are so-called anisotropy parameters. However, if you really need a single polynomial 𝑃𝑛(cos 𝜃),
this can be easily achieved by

Angular.legendre([0] * n + [1])

class abel.tools.polynomial.ApproxGaussian(tol=0.0048)
Bases: object

Piecewise quadratic approximation (non-negative and continuous but not exactly smooth) of the unit-amplitude,
unit-SD Gaussian function exp(−𝑟2/2), equal to it at endpoints and midpoint of each piece. The forward Abel
transform of this approximation will typically have a better relative accuracy than the approximation itself.

Parameters
tol (float) – absolute approximation tolerance (maximal deviation). Some reference values yield-
ing the best accuracy for certain number of segments:

tol Better than Segments

3.7e-2 5% 3

1.4e-2 2% 5

4.8e-3 0.5% 7 (default)

0.86e-3 0.1% 13

0.99e-4 0.01% 27

0.95e-5 0.001% 59

ranges

list of parameters (r_min, r_max, [c0, c1, c2], r_0, s) that can be passed directly to
PiecewisePolynomial or, after “multiplication” by Angular, to PiecewiseSPolynomial

Type
lists of tuple

norm

the integral
∫︀ +∞
−∞ 𝑓(𝑟) 𝑑𝑟 for normalization (equals

√
2𝜋 for the ideal Gaussian function, but slightly differs

for the approximation)

Type
float
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scaled(A=1.0, r_0=0.0, sigma=1.0)
Parameters for piecewise polynomials corresponding to the shifted and scaled Gaussian function
𝐴 exp

(︀
[(𝑟 − 𝑟0)/𝜎]

2/2
)︀
.

(Useful numbers: a Gaussian normalized to unit integral, that is the standard normal distribution, has
𝐴 = 1/

√
2𝜋; however, see norm above. A Gaussian with FWHM = 1 has 𝜎 = 1/

√
8 ln 2.)

Parameters

• A (float) – amplitude

• r_0 (float) – peak position

• sigma (float) – standard deviation

Returns
ranges – parameters for the piecewise polynomial approximating the shifted and scaled Gaus-
sian

Return type
list of tuple

abel.tools.polynomial.bspline(spl)
Convert SciPy B-spline to PiecewisePolynomial parameters.

Parameters
spl (tuple or BSpline or UnivariateSpline) – scipy.interpolate B-spline representation, such
as splrep() results, BSpline object (result of make_interp_spline(), for example) or
UnivariateSpline object

Returns
ranges – list of parameters (r_min, r_max, coeffs, r_0) that can be passed directly to
PiecewisePolynomial or, after “multiplication” by Angular, to PiecewiseSPolynomial

Return type
list of tuple

3.6.1 Polynomials

Implemented in abel.tools.polynomial.

Abel transform

The Abel transform of a polynomial

func(𝑟) =
𝐾∑︁

𝑘=0

𝑐𝑘𝑟
𝑘

defined on a domain [𝑟min, 𝑟max] (and zero elsewhere) is calculated as

abel(𝑥) =
𝐾∑︁

𝑘=0

𝑐𝑘

∫︁
𝑟𝑘 𝑑𝑦,

where 𝑟 =
√︀
𝑥2 + 𝑦2, and the Abel integral is taken over the domain where 𝑟min ⩽ 𝑟 ⩽ 𝑟max. Namely,∫︁

𝑟𝑘 𝑑𝑦 = 2

∫︁ 𝑦max

𝑦min

𝑟𝑘 𝑑𝑦,
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𝑦min,max =

{︃√︁
𝑟2min,max − 𝑥2, 𝑥 < 𝑟min,max,

0 otherwise.

These integrals for any power 𝑘 are easily obtained from the recursive relation∫︁
𝑟𝑘 𝑑𝑦 =

1

𝑘 + 1

(︂
𝑦𝑟𝑘 + 𝑘𝑥2

∫︁
𝑟𝑘−2 𝑑𝑦

)︂
.

For even 𝑘 this yields a polynomial in 𝑦 and powers of 𝑥 and 𝑟:∫︁
𝑟𝑘 𝑑𝑦 = 𝑦

𝑘∑︁
𝑚=0

𝐶𝑚𝑟𝑚𝑥𝑘−𝑚, (summing over even 𝑚)

𝐶𝑘 =
1

𝑘 + 1
, 𝐶𝑚−2 =

𝑚

𝑚− 1
𝐶𝑚.

For odd 𝑘, the recursion terminates at ∫︁
𝑟−1 𝑑𝑦 = ln(𝑦 + 𝑟),

so ∫︁
𝑟𝑘 𝑑𝑦 = 𝑦

𝑘∑︁
𝑚=1

𝐶𝑚𝑟𝑚𝑥𝑘−𝑚 + 𝐶1𝑥
𝑘+1 ln(𝑦 + 𝑟), (summing over odd 𝑚)

with the same expressions for 𝐶𝑚. For example, here are explicit formulas for several low degrees:

𝑘
∫︀
𝑟𝑘 𝑑𝑦

0 𝑦

1 1
2𝑟𝑦 +

1
2𝑥

2 ln(𝑦 + 𝑟)

2
(︀
1
3𝑟

2 + 2
3𝑥

2
)︀
𝑦

3
(︀
1
4𝑟

3 + 3
8𝑟𝑥

2
)︀
𝑦 + 3

8𝑥
4 ln(𝑦 + 𝑟)

4
(︀
1
5𝑟

4 + 4
15𝑟

2𝑥2 + 8
15𝑥

4
)︀
𝑦

5
(︀
1
6𝑟

5 + 5
24𝑟

3𝑥2 + 5
16𝑟𝑥

4
)︀
𝑦 + 5

16𝑥
6 ln(𝑦 + 𝑟)

. . . . . .

The sums over 𝑚 are computed using Horner’s method in 𝑥, which requires only 𝑥2, 𝑦 (see above), ln(𝑦 + 𝑟) (for
polynomials with odd degrees), and powers of 𝑟 up to 𝐾.

The sum of the integrals, however, is computed by direct addition. In particular, this means that an attempt to use this
method for high-degree polynomials (for example, approximating some function with a 100-degree Taylor polynomial)
will most likely fail due to loss of significance in floating-point operations. Splines are a much better choice in this
respect, although at sufficiently large 𝑟 and 𝑥 (≳10 000) these numerical problems might become significant even for
cubic polynomials.

3.6. abel.tools.polynomial module 49

https://en.wikipedia.org/wiki/Horner's_method
https://en.wikipedia.org/wiki/Loss_of_significance


PyAbel Documentation, Release 0.9.0

Affine transformation

It is sometimes convenient to define a polynomial in some canonical form and adapt it to the particular case by an affine
transformation (translation and scaling) of the independent variable, like in the example below.

The scaling around 𝑟 = 0 is

𝑃 ′(𝑟) = 𝑃 (𝑟/𝑠) =

𝐾∑︁
𝑘=0

𝑐𝑘(𝑟/𝑠)
𝑘,

which applies an 𝑠-fold stretching to the function. The coefficients of the transformed polynomial are thus

𝑐′𝑘 = 𝑐𝑘/𝑠
𝑘.

The translation is

𝑃 ′(𝑟) = 𝑃 (𝑟 − 𝑟0) =

𝐾∑︁
𝑘=0

𝑐𝑘(𝑟 − 𝑟0)
𝑘,

which shifts the origin to 𝑟0. The coefficients of the transformed polynomial can be obtained by expanding all powers
of the binomial 𝑟 − 𝑟0 and collecting the powers of 𝑟. This is implemented in a matrix form

c′ = Mc,

where the coefficients are represented by a column vector c = (𝑐0, 𝑐1, . . . , 𝑐𝐾)T, and the matrix M is the Hadamard
product of the upper-triangular Pascal matrix and the Toeplitz matrix of 𝑟𝑘0 :

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 · · ·

0 1 2 3 4 · · ·

0 0 1 3 6 · · ·

0 0 0 1 4 · · ·

0 0 0 0 1 · · ·
...

...
...

...
...

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∘

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑟00 𝑟10 𝑟20
. . . 𝑟𝐾0

0 𝑟00 𝑟10
. . . 𝑟𝐾−1

0

0 0 𝑟00
. . . 𝑟𝐾−2

0

. . . . . . . . . . . . . . .

0 0 0
. . . 𝑟00

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Example

Consider a two-sided step function with soft edges:

0 rmin rmax
0

A/2

A w w w w
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The edges can be represented by the cubic smoothstep function

𝑆(𝑟) = 3𝑟2 − 2𝑟3,

which smoothly rises from 0 at 𝑟 = 0 to 1 at 𝑟 = 1. The left edge requires stretching it by 2𝑤 and shifting the origin to
𝑟min−𝑤. The right edge is𝑆(𝑟) stretched by−2𝑤 (the negative sign mirrors it horizontally) and shifted to 𝑟max+𝑤. The
shelf is just a constant (zeroth-degree polynomial). It can be set to 1, and then the desired function with the amplitude
𝐴 is obtained by multiplying the resulting piecewise polynomial by 𝐴:

import matplotlib.pyplot as plt
import numpy as np

from abel.tools.polynomial import PiecewisePolynomial as PP

r = np.arange(51.0)

rmin = 10
rmax = 40
w = 5
A = 3

c = [0, 0, 3, -2]
smoothstep = A * PP(r, [(rmin - w, rmin + w, c, rmin - w, 2 * w),

(rmin + w, rmax - w, [1]),
(rmax - w, rmax + w, c, rmax + w, -2 * w)])

fig, axs = plt.subplots(2, 1)

axs[0].set_title('func')
axs[0].set_xlabel('$r$')
axs[0].plot(r, smoothstep.func)

axs[1].set_title('abel')
axs[1].set_xlabel('$x$')
axs[1].plot(r, smoothstep.abel)

plt.tight_layout()
plt.show()

Polynomial and PiecewisePolynomial are also accessible through the abel.tools.analytical module. Am-
plitude scaling by multiplying the “function” (a Python object actually) is not supported there, but it can be achieved
simply by scaling all the coefficients:

from abel.tools.analytical import PiecewisePolynomial as PP
c = A * np.array([0, 0, 3, -2])
smoothstep = PP(..., [(rmin - w, rmin + w, c, rmin - w, 2 * w),

(rmin + w, rmax - w, [A]),
(rmax - w, rmax + w, c, rmax + w, -2 * w)], ...)
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3.6.2 In spherical coordinates

Implemented as SPolynomial.

Axially symmetric bivariate polynomials in spherical coordinates have the general form

func(𝜌, 𝜃′) =
𝑀,𝑁∑︁

𝑚,𝑛=0

𝑐𝑚𝑛𝜌
𝑚 cos𝑛 𝜃′

(see rBasex: mathematical details for definitions of the coordinate systems).

Abel transform

The forward Abel transform of this function defined on a radial domain [𝜌min, 𝜌max] (and zero elsewhere) is calculated
as

abel(𝑟, 𝜃) =
𝑀,𝑁∑︁

𝑚,𝑛=0

𝑐𝑚𝑛

∫︁
𝜌𝑚 cos𝑛 𝜃′ 𝑑𝑧,

where

𝜌 =
√︀
𝑟2 + 𝑧2, cos 𝜃′ =

𝑟

𝜌
cos 𝜃,

and the Abel integral is taken over the domain where 𝜌min ⩽ 𝜌 ⩽ 𝜌max. That is, for each term we have

∫︁
𝜌𝑚 cos𝑛 𝜃′ 𝑑𝑧 = 2

𝑧max∫︁
𝑧min

𝜌𝑚
(︂
𝑟

𝜌

)︂𝑛

𝑑𝑧 · cos𝑛 𝜃 = 2𝑟𝑚
𝑧max∫︁

𝑧min

(︂
𝑟

𝜌

)︂(𝑛−𝑚)

𝑑𝑧 · cos𝑛 𝜃,

where

𝑧min,max =

{︃√︁
𝜌2min,max − 𝑟2, 𝑟 < 𝜌min,max,

0 otherwise.

The antiderivatives

𝐹𝑛−𝑚(𝑟, 𝑧) =

∫︁ (︂
𝑟

𝜌

)︂𝑛−𝑚

𝑑𝑧

are given in rBasex: mathematical details, with the only difference that besides the recurrence relation

𝐹𝑘+2(𝑟, 𝑧) =
1

𝑘

[︃
𝑧

(︂
𝑟

𝜌

)︂𝑘

+ (𝑘 − 1)𝐹𝑘(𝑟, 𝑧)

]︃

for calculating the terms with positive 𝑘 = 𝑛−𝑚, the reverse recurrence relation

𝐹𝑘(𝑟, 𝑧) =
1

1− 𝑘

[︃
𝑧

(︂
𝑟

𝜌

)︂𝑘

− 𝑘𝐹𝑘+2(𝑟, 𝑧)

]︃

is also used for negative 𝑘, requred for the terms with 𝑚 > 𝑛.

The overall Abel transform thus has the form

abel(𝑟, 𝜃) =
𝑀,𝑁∑︁

𝑚,𝑛=0

𝑐𝑚𝑛 2𝑟
𝑚[𝐹𝑛−𝑚(𝑟, 𝑧max)− 𝐹𝑛−𝑚(𝑟, 𝑧min)] cos

𝑛 𝜃
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and is calculated using Horner’s method in 𝑟 and cos 𝜃 after precomputing the 𝐹𝑛−𝑚(𝑟, 𝑧min,max) pairs for each needed
value of 𝑛−𝑚 (there are at most 𝑀 +𝑁 + 1 of them, if all 𝑀 ×𝑁 coefficients 𝑐𝑚𝑛 ̸= 0).

Notice that these calculations are relatively expensive, since they are done for all pixels with 𝜌 ⩽ 𝜌max, for each of them
involving summation and multiplication of up to 2𝑀𝑁 terms in the above expression and evaluating transcendent
functions present in 𝐹𝑘(𝑟, 𝑧). Moreover, the numerical problems for high-degree polynomials thus can be even more
severe than for univariate polynomials.

3.6.3 Approximate Gaussian

Implemented as ApproxGaussian.

The Gaussian function

𝐴 exp

(︂
− (𝑟 − 𝑟0)

2

2𝜎2

)︂
is useful for representing peaks in simulated data but does not have an analytical Abel transform unless 𝑟0 = 0. How-
ever, it can be approximated by piecewise polynomials to any accuracy, and these polynomials can be Able-transformed
analytically, as shown above, thus providing an arbitrarily accurate approximation to the Abel transform of the initial
Gaussian function.

In practice, it is sufficient to find the approximating piecewise polynomial for the Gaussian function 𝑔(𝑟) = exp(−𝑟2/2)
with unit amplitude and unit standard deviation, and the polynomial coefficients can then be scaled as described above
to account for any 𝐴, 𝑟0 and 𝜎.

The goal is therefore to find 𝑓(𝑟) such that |𝑓(𝑟)− 𝑔(𝑟)| ⩽ 𝜀 for a given tolerance 𝜀. The approximation implemented
here uses a piecewise quadratic polynomial:

𝑓(𝑟) =

{︃
𝑓𝑛(𝑟) = 𝑐0,𝑛 + 𝑐1,𝑛𝑟 + 𝑐2,𝑛𝑟

2, 𝑟 ∈ [𝑅𝑛, 𝑅𝑛+1],

0, 𝑟 /∈ [𝑅0, 𝑅𝑁 ],

where the domain is split into 𝑁 intervals [𝑅𝑛, 𝑅𝑛+1], 𝑛 = 0, . . . , 𝑁−1. The strategy used for minimizing the number
of intervals is to find the splitting points such that

𝑓𝑛(𝑟) = 𝑔(𝑟) for 𝑟 = 𝑅𝑛, 𝑅𝑛+ 1
2
, 𝑅𝑛+1, where 𝑅𝑛+ 1

2
≡ 𝑅𝑛 +𝑅𝑛+1

2
,

max
𝑟∈[𝑅𝑛,𝑅𝑛+1]

⃒⃒
𝑓𝑛(𝑟)− 𝑔(𝑟)

⃒⃒
= 𝜀,

in other words, each parabolic segment matches the 𝑔(𝑟) values at the endpoints and midpoint of its interval, and its
maximal deviation from 𝑔(𝑟) equals 𝜀. The process starts from𝑅0 =

√︀
−2 ln(𝜀/2), such that 𝑔(𝑅0) = 𝜀/2, but setting

𝑓0(𝑅0) = 0 for continuity. Then subsequent points𝑅1, 𝑅2, . . . are found by solvingmax𝑟∈[𝑅𝑛,𝑅𝑛+1]

⃒⃒
𝑓𝑛(𝑟)−𝑔(𝑟)

⃒⃒
≈ 𝜀

for 𝑅𝑛+1 numerically, using the following approximation obtained from the 3rd-order term of the 𝑔(𝑟) Taylor series
(by construction, 𝑓𝑛(𝑟) reproduces the lower-order terms exactly, and the magnitudes of higher-order terms are much
smaller):

max
𝑟∈[𝑅𝑛,𝑅𝑛+1]

⃒⃒
𝑓𝑛(𝑟)− 𝑔(𝑟)

⃒⃒
≈

≈ max
𝑟=𝑅𝑛,𝑅𝑛+1

2
,𝑅𝑛+1

⃒⃒⃒⃒
𝑔′′′(𝑟)

3!

⃒⃒⃒⃒
· max
𝑟∈[𝑅𝑛,𝑅𝑛+1]

⃒⃒
(𝑟 −𝑅𝑛)(𝑟 −𝑅𝑛+ 1

2
)(𝑟 −𝑅𝑛+1)

⃒⃒
=

= max
𝑟=𝑅𝑛,𝑅𝑛+1

2
,𝑅𝑛+1

⃒⃒
(3− 𝑟2)𝑟𝑔(𝑟)

⃒⃒
· |𝑅𝑛 −𝑅𝑛+1|3

72
√
3

.

This process is repeated until 𝑟 = 0 is reached, after which the found splitting is symmetrically extended to −𝑅0 ⩽
𝑟 < 0, and the polynomial coefficients for each segment are trivially calculated from the equations 𝑓𝑛(𝑟) = 𝑔(𝑟) for
𝑟 = 𝑅𝑛, 𝑅𝑛+ 1

2
, 𝑅𝑛+1.

As an example, here is the outcome for the default approximation accuracy ≲0.5 %, resulting in just 7 segments:
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from abel.tools.polynomial import ApproxGaussian, PiecewisePolynomial
r = np.arange(201)
r0 = 100
sigma = 20
# actual Gaussian function
gauss = np.exp(-((r - r0) / sigma)**2 / 2)
# approximation with default tolerance (~0.5%)
approx = PiecewisePolynomial(r, ApproxGaussian().scaled(1, r0, sigma))
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The Abel transform of this approximation is even more accurate, having the maximal relative deviation
~0.35/170 ≈ 0.2 %:
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A practical example of using ApproxGaussian with PiecewiseSPolynomial can be found in the SampleImage
source code.

3.7 abel.tools.transform_pairs module

Analytical function Abel-transform pairs

profiles 1–7:
G. C.-Y. Chan, Gary M. Hieftje, “Estimation of confidence intervals for radial emissivity and optimization of
data treatment techniques in Abel inversion”, Spectrochimica Acta B 61, 31–41 (2006), Table 1.

Note: the transform pair functions are more conveniently accessed through abel.tools.analytical.
TransformPair:

func = abel.tools.analytical.TransformPair(n, profile=nprofile)

which sets the radial range r and provides attributes .func (source), .abel (projection), .r (radial range), .dr (step),
.label (the profile name)

Parameters
r (floats or numpy 1D array of floats) – value or grid to evaluate the function pair: 0 < r < 1

returns
source, projection – source function profile (inverse Abel transform of projection), projection func-
ton profile (forward Abel transform of source)
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rtype
tuple of 1D numpy arrays of shape r

abel.tools.transform_pairs.a(n, r)
Coefficient 𝑎𝑛 =

√
𝑛2 − 𝑟2.

abel.tools.transform_pairs.profile1(r)
profile1: C. J. Cremers, R. C. Birkebak, “Application of the Abel Integral Equation to Spectrographic Data”,
Appl. Opt. 5, 1057–1064 (1966), Eq. (13).

𝜖(𝑟) = 0.75 + 12𝑟2 − 32𝑟3 0 ≤ 𝑟 ≤ 0.25

𝜖(𝑟) =
16

27
(1 + 6𝑟 − 15𝑟2 + 8𝑟3) 0.25 < 𝑟 ≤ 1

𝐼(𝑟) =
1

108
(128𝑎1 + 𝑎0.25) +

2

27
𝑟2(283𝑎0.25 − 112𝑎1) +

8

9
𝑟2

[︂
4(1 + 𝑟2) ln

1 + 𝑎1
𝑟
− (4 + 31𝑟2) ln

0.25 + 𝑎0.25
𝑟

]︂
0 ≤ 𝑟 ≤ 0.25

𝐼(𝑟) =
32

27

[︂
𝑎1 − 7𝑎1𝑟 + 3𝑟2(1 + 𝑟2) ln

1 + 𝑎1
𝑟

]︂
0.25 < 𝑟 ≤ 1
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abel.tools.transform_pairs.profile2(r)
profile2: C. J. Cremers, R. C. Birkebak, “Application of the Abel Integral Equation to Spectrographic Data”,
Appl. Opt. 5, 1057–1064 (1966), Eq. (11).

𝜖(𝑟) = 1− 3𝑟2 + 2𝑟3 0 ≤ 𝑟 ≤ 1

𝐼(𝑟) = 𝑎1

(︂
1− 5

2
𝑟2
)︂
+

3

2
𝑟4 ln

1 + 𝑎1
𝑟

0 ≤ 𝑟 ≤ 1
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abel.tools.transform_pairs.profile3(r)
profile3: C. J. Cremers, R. C. Birkebak, “Application of the Abel Integral Equation to Spectrographic Data”,
Appl. Opt. 5, 1057–1064 (1966), Eq. (12).

𝜖(𝑟) = 1− 2𝑟2 0 ≤ 𝑟 ≤ 0.5

𝜖(𝑟) = 2(1− 𝑟2)2 0.5 < 𝑟 ≤ 1

𝐼(𝑟) =
4𝑎1
3

(1 + 2𝑟2)− 2𝑎0.5
3

(1 + 8𝑟2)− 4𝑟2 ln
1− 𝑎1

0.5 + 𝑎0.5
0 ≤ 𝑟 ≤ 0.5

𝐼(𝑟) =
4𝑎1
3

(1 + 2𝑟2)− 4𝑟2 ln
1− 𝑎1

𝑟
0.5 < 𝑟 ≤ 1
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abel.tools.transform_pairs.profile4(r)
profile4: R. Álvarez, A. Rodero, M. C. Quintero, “An Abel inversion method for radially resolved measurements
in the axial injection torch”, Spectochim. Acta B 57, 1665–1680 (2002), Eq. (10).

Note: This profile has a small discontinuity at 𝑟 = 0.7.

Published projection has misprints (“193.30083” instead of “196.30083” in both cases).
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𝜖(𝑟) = 0.1 + 5.51𝑟2 − 5.25𝑟3 0 ≤ 𝑟 ≤ 0.7

𝜖(𝑟) = −40.74 + 155.56𝑟 − 188.89𝑟2 + 74.07𝑟3 0.7 < 𝑟 ≤ 1

𝐼(𝑟) = 22.68862𝑎0.7 − 14.811667𝑎1 +

(217.557𝑎0.7 − 196.30083𝑎1)𝑟
2 + 155.56𝑟2 ln

1 + 𝑎1
0.7 + 𝑎0.7

+

𝑟4
(︂
55.5525 ln

1 + 𝑎1
𝑟
− 59.49 ln

0.7 + 𝑎0.7
𝑟

)︂
0 ≤ 𝑟 ≤ 0.7

𝐼(𝑟) = −14.811667𝑎1 − 196.30083𝑎1𝑟
2 +

𝑟2(155.56 + 55.5525𝑟2) ln
1 + 𝑎1

𝑟
0.7 < 𝑟 ≤ 1
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abel.tools.transform_pairs.profile5(r)
profile5: M. J. Buie, J. T. P. Pender, J. P. Holloway, T. Vincent, P. L. G. Ventzek, M. L. Brake, J. Quant. Spectrosc.
Radiat. Transf. 55, 231–243 (1996), Table 1, № 1.

Note: This profile is discontinuous (and its projection is not smooth) at 𝑟 = 1, which can cause different
problems in different methods, in particular, depending on their assumptions where the singularity is located
within the last pixel.

𝜖(𝑟) = 1 0 ≤ 𝑟 ≤ 1

𝐼(𝑟) = 2𝑎1 0 ≤ 𝑟 ≤ 1
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abel.tools.transform_pairs.profile6(r)
profile6: M. J. Buie, J. T. P. Pender, J. P. Holloway, T. Vincent, P. L. G. Ventzek, M. L. Brake, J. Quant. Spectrosc.
Radiat. Transf. 55, 231–243 (1996), Table 1, № 7.

𝜖(𝑟) = (1− 𝑟2)−
3
2 exp

[︂
1.12

(︂
1− 1

1− 𝑟2

)︂]︂
0 ≤ 𝑟 ≤ 1

𝐼(𝑟) =

√
𝜋

1.1𝑎1
exp

[︂
1.12

(︂
1− 1

1− 𝑟2

)︂]︂
0 ≤ 𝑟 ≤ 1
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abel.tools.transform_pairs.profile7(r)
profile7: M. J. Buie, J. T. P. Pender, J. P. Holloway, T. Vincent, P. L. G. Ventzek, M. L. Brake, J. Quant. Spectrosc.
Radiat. Transf. 55, 231–243 (1996), Table 1, № 9 (divided by 2).

𝜖(𝑟) =
1

2
(1 + 10𝑟2 − 23𝑟4 + 12𝑟6) 0 ≤ 𝑟 ≤ 1

𝐼(𝑟) =
8

105
𝑎1(19 + 34𝑟2 − 125𝑟4 + 72𝑟6) 0 ≤ 𝑟 ≤ 1
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3.8 abel.tools.symmetry module

abel.tools.symmetry.get_image_quadrants(IM, reorient=True, symmetry_axis=None, use_
quadrants=(True, True, True, True), symmetrize_
method='average')

Given an image (m, n) return its 4 quadrants Q0, Q1, Q2, Q3 as defined below.

Parameters

• IM (2D np.array) – Image data shape (rows, cols)

• reorient (boolean) – Reorient quadrants to match the orientation of Q0 (top-right)

• symmetry_axis (int or tuple) – can have values of None, 0, 1, or (0, 1) and specifies no
symmetry, vertical symmetry axis, horizontal symmetry axis, and both vertical and horizon-
tal symmetry axes. Quadrants are added. See Note.

• use_quadrants (boolean tuple) – Include quadrant (Q0, Q1, Q2, Q3) in the symmetry com-
bination(s) and final image

• symmetrize_method (str) – Method used for symmetrizing the image.

average
Simply average the quadrants.

fourier
Axial symmetry implies that the Fourier components of the 2-D projection should be real.
Removing the imaginary components in reciprocal space leaves a symmetric projection.

K. R. Overstreet, P. Zabawa, J. Tallant, A. Schwettmann, J. P. Shaffer, “Multiple scattering
and the density distribution of a Cs MOT”, Optics Express 13, 9672–9682 (2005).

Returns
Q0, Q1, Q2, Q3 – shape: (rows // 2 + rows % 2, cols // 2 + cols % 2) all oriented
in the same direction as Q0 if reorient=True

Return type
tuple of 2D np.arrays
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Notes

The symmetry_axis keyword averages quadrants like this:

+--------+--------+
| Q1 * | * Q0 |
| * | * |
| * | * | cQ1 | cQ0
+--------o--------+ --(output)--> ----o----
| * | * | cQ2 | cQ3
| * | * |
| Q2 * | * Q3 | cQi == combined quadrants
+--------+--------+

symmetry_axis = None — individual quadrants
symmetry_axis = 0 (vertical) — average Q0 + Q1, and Q2 + Q3
symmetry_axis = 1 (horizontal) — average Q1 + Q2, and Q0 + Q3
symmetry_axis = (0, 1) (both) — combine and average all 4 quadrants

The end results look like this:

(0) symmetry_axis = None

returned image Q1 | Q0
---o---
Q2 | Q3

(1) symmetry_axis = 0

Combine: Q01 = Q0 + Q1, Q23 = Q2 + Q3
returned image Q01 | Q01

----o----
Q23 | Q23

(2) symmetry_axis = 1

Combine: Q12 = Q1 + Q2, Q03 = Q0 + Q3
returned image Q12 | Q03

----o----
Q12 | Q03

(3) symmetry_axis = (0, 1)

Combine all quadrants: Q = Q0 + Q1 + Q2 + Q3
returned image Q | Q

--o-- all quadrants equivalent
Q | Q

abel.tools.symmetry.put_image_quadrants(Q, original_image_shape, symmetry_axis=None)
Reassemble image from 4 quadrants Q = (Q0, Q1, Q2, Q3) The reverse process to get_image_quadrants()
with reorient=True.

Note: the quadrants should all be oriented as Q0, the upper right quadrant

Parameters
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• Q (tuple of np.array (Q0, Q1, Q2, Q3)) – Image quadrants all oriented as Q0 shape (rows
// 2 + rows % 2, cols // 2 + cols % 2)

+--------+--------+
| Q1 * | * Q0 |
| * | * |
| * | * |
+--------o--------+
| * | * |
| * | * |
| Q2 * | * Q3 |
+--------+--------+

• original_image_shape (tuple) – (rows, cols)

reverses the padding added by get_image_quadrants() for odd axis sizes

odd row trims 1 row from Q1, Q0

odd column trims 1 column from Q1, Q2

• symmetry_axis (int or tuple) –

impose image symmetry

symmetry_axis = 0 (vertical) — Q0 == Q1 and Q3 == Q2 symmetry_axis
= 1 (horizontal) — Q2 == Q1 and Q3 == Q0

Returns

IM –

Reassembled image of shape (rows, cols):

symmetry_axis =

None: 0: 1: (0, 1):

Q1 | Q0 Q1 | Q1 Q1 | Q0 Q1 | Q1
---o--- ---o---- ---o--- ---o---
Q2 | Q3 Q2 | Q2 Q1 | Q0 Q1 | Q1

Return type
np.array

3.9 abel.tools.vmi module

abel.tools.vmi.radial_intensity(kind, IM, origin=None, dr=1, dt=None)
Calculate the one-dimensional radial intensity profile by angular integration or averaging of the image, treated
either as a two-dimensional distribution or as a central slice of a cylindrically symmetric three-dimensional
distribution.

Parameters

• kind (str) – operation to perform:

'int2D':
integration in 2D over polar angles
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'int3D':
integration in 3D over solid angles

'avg2D':
averaging in 2D over polar angles

'avg3D':
averaging in 3D over solid angles

• IM (2D numpy.array) – the image data

• origin (tuple of float or None) – image origin in the (row, column) format. If None, the
geometric center of the image (rows // 2, cols // 2) is used.

• dr (float) – radial grid spacing in pixels (default 1). dr=0.5may reduce pixel granularity of
the radial profile.

• dt (float or None) – angular grid spacing in radians. If None, the number of theta values will
be set to largest dimension (the height or the width) of the image, which should typically
ensure good sampling.

Returns

• r (1D numpy.array) – radial coordinates

• intensity (1D numpy.array) – intensity profile as a function of the radial coordinate

abel.tools.vmi.angular_integration_2D(IM, origin=None, dr=1, dt=None)
Angular integration of the image as a two-dimensional object.

Equivalent to radial_intensity('int2D', IM, origin, dr, dt).

abel.tools.vmi.angular_integration_3D(IM, origin=None, dr=1, dt=None)
Angular integration of the three-dimensional cylindrically symmetric object represented by the image as its
central slice. When applied to the inverse Abel transform of a velocity-mapping image, this yields the speed
distribution.

Equivalent to radial_intensity('int3D', IM, origin, dr, dt).

abel.tools.vmi.average_radial_intensity_2D(IM, origin=None, dr=1, dt=None)
Calculate the average radial intensity of the image as a two-dimensional object.

Equivalent to radial_intensity('avg2D', IM, origin, dr, dt).

abel.tools.vmi.average_radial_intensity_3D(IM, origin=None, dr=1, dt=None)
Calculate the average radial intensity of the three-dimensional cylindrically symmetric object represented by the
image as its central slice.

Equivalent to radial_intensity('avg3D', IM, origin, dr, dt).

abel.tools.vmi.angular_integration(IM, origin=None, Jacobian=True, dr=1, dt=None)
Angular integration of the image.

Returns the one-dimensional intensity profile as a function of the radial coordinate.

Note: the use of Jacobian=True applies the correct Jacobian for the integration of a 3D object in spherical
coordinates.

Warning: This function behaves incorrectly: misses a factor of 𝜋 for 3D integration, with Jacobian=True,
and for Jacobian=False returns the average (over polar angles) multiplied by 2𝜋 instead of integrating. It
is currently deprecated and is provided only for backward compatibility, but will be removed in the future.
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Please use radial_intensity(), angular_integration_2D() or angular_integration_3D().

Parameters

• IM (2D numpy.array) – the image data

• origin (tuple or None) – image origin in the (row, column) format. If None, the geometric
center of the image (rows // 2, cols // 2) is used.

• Jacobian (bool) – Include 𝑟 sin 𝜃 in the angular sum (integration). Also, Jacobian=True
is passed to abel.tools.polar.reproject_image_into_polar(), which includes an-
other value of r, thus providing the appropriate total Jacobian of 𝑟2 sin 𝜃.

• dr (float) – radial grid spacing in pixels (default 1). dr=0.5may reduce pixel granularity of
the speed profile.

• dt (float or None) – angular grid spacing in radians. If None, the number of theta values will
be set to largest dimension (the height or the width) of the image, which should typically
ensure good sampling.

Returns

• r (1D numpy.array) – radial coordinates

• speeds (1D numpy.array) – integrated intensity array (vs radius).

abel.tools.vmi.average_radial_intensity(IM, **kwargs)
Calculate the average radial intensity of the image, averaged over all angles. This differs form abel.tools.
vmi.angular_integration() only in that it returns the average intensity, and not the integrated intensity of a
3D image. It is equivalent to calling abel.tools.vmi.angular_integration() with Jacobian=True and
then dividing the result by 2𝜋.

Warning: This function is currently deprecated and is provided only for backward compatibility, but will
be removed in the future.

Please use radial_intensity(), average_radial_intensity_2D() or average_radial_
intensity_3D().

Parameters

• IM (2D numpy.array) – the image data

• kwargs – additional keyword arguments to be passed to abel.tools.vmi.angular_
integration()

Returns

• r (1D numpy.array) – radial coordinates

• intensity (1D numpy.array) – intensity profile as a function of the radial coordinate

abel.tools.vmi.radial_integration(IM, origin=None, radial_ranges=None)
Intensity variation in the angular coordinate.

This function is the 𝜃-coordinate complement to abel.tools.vmi.average_radial_intensity_3D().

Evaluates intensity vs angle for defined radial ranges. Determines the anisotropy parameter for each radial range.

See examples/example_O2_PES_PAD.py.
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Parameters

• IM (2D numpy.array) – the image data

• origin (tuple or None) – image origin in the (row, column) format. If None, the geometric
center of the image (rows // 2, cols // 2) is used.

• radial_ranges (list of tuple or int) –

list of tuple
integration ranges [(r0, r1), (r2, r3), ...]. Evaluates the intensity vs angle for
the radial ranges r0_r1, r2_r3, etc.

int
radial step. Evaluates the intensity vs angle for the whole radial range (0, step),
(step, 2*step), ..

Returns

• Beta (list of tuples) – (beta0, error_beta_fit0), (beta1, error_beta_fit1), . . . corresponding to
the radial ranges

• Amplitude (list of tuples) – (amp0, error_amp_fit0), (amp1, error_amp_fit1), . . . corre-
sponding to the radial ranges

• Rmidpt (list of float) – radial mid-point of each radial range

• Intensity_vs_theta (list of numpy.array) – intensity vs angle distribution for each selected
radial range

• theta (1D numpy.array) – angle coordinates, referenced to vertical direction

abel.tools.vmi.anisotropy_parameter(theta, intensity, theta_ranges=None)
Evaluate anisotropy parameter 𝛽, for 𝐼 vs 𝜃 data:

𝐼 =
𝜎total

4𝜋
[1 + 𝛽𝑃2(cos 𝜃)],

where 𝑃2(𝑥) =
3𝑥2−1

2 is a 2nd-order Legendre polynomial.

J. Cooper, R. N. Zare, “Angular Distribution of Photoelectrons”, J. Chem. Phys. 48, 942–943 (1968).

Parameters

• theta (1D numpy array) – angle coordinates, referenced to the vertical direction.

• intensity (1D numpy array) – intensity variation with angle

• theta_ranges (list of tuples or None) – angular ranges over which to fit [(theta1,
theta2), (theta3, theta4)]. Allows data to be excluded from fit; default (None) is
to include all data.

Returns

• beta (tuple of floats) – (anisotropy parameter, fit error)

• amplitude (tuple of floats) – (amplitude of signal, fit error)

abel.tools.vmi.toPES(radial, intensity, energy_cal_factor, per_energy_scaling=True, photon_energy=None,
Vrep=None, zoom=1)

Convert speed radial coordinate into electron kinetic or electron binding energy. Return the photoelectron spec-
trum (PES).

This calculation uses a single scaling factor energy_cal_factor to convert the radial pixel coordinate into electron
kinetic energy.
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Additional experimental parameters: photon_energy will give the energy scale as electron binding energy, in
the same energy units, while Vrep, the VMI lens repeller voltage (volts), provides for a voltage-independent
scaling factor. i.e. energy_cal_factor should remain approximately constant.

The energy_cal_factor is readily determined by comparing the generated energy scale with published spectra.
e.g. for O2

− photodetachment, the origin band occurs at the electron affinity 𝐸𝐴 = 3613 cm−1. Values for the
ANU experiment are given below, see also examples/example_hansenlaw.py.

Parameters

• radial (numpy 1D array) – radial coordinates.

• intensity (numpy 1D array) – intensity values, at the radial array.

• energy_cal_factor (float) – energy calibration factor that will convert radius squared into
energy. The units affect the units of the output. e.g. inputs in eV/pixel2, will give output
energy units in eV. A value of 1.204 × 10−5 cm−1/pixel2 applies for “examples/data/O2-
ANU1024.txt” (with Vrep = −2200 volts).

• per_energy_scaling (bool) – sets the intensity Jacobian. If True, the returned intensities
correspond to an “intensity per eV” or “intensity per cm−1”. If False, the returned intensi-
ties correspond to an “intensity per pixel”.

• photon_energy (None or float) – measurement photon energy. The output energy scale
is then set to electron-binding-energy in units of energy_cal_factor. The conversion
from wavelength (nm) to photon_energy (cm−1) is 107/𝜆 (nm) e.g. 1.0e7/454.5 for
“examples/data/O2-ANU1024.txt”.

• Vrep (None or float) – repeller voltage. Convenience parameter to allow the energy_
cal_factor to remain constant, for different VMI lens repeller voltages. Defaults to None,
in which case no extra scaling is applied. e.g. -2200 (volts), for “examples/data/O2-
ANU1024.txt”.

• zoom (float) – additional scaling factor if the input experimental image has been zoomed.
Default 1.

Returns

• eKBE (numpy 1D array of floats) – energy scale for the photoelectron spectrum in units of
energy_cal_factor. Note that the data is no longer on a uniform grid.

• PES (numpy 1D array of floats) – the photoelectron spectrum, scaled according to the per_
energy_scaling input parameter.

class abel.tools.vmi.Distributions(origin='center', rmax='MIN', order=2, odd=False, use_sin=True,
weights=None, method='linear')

Bases: object

Class for calculating various radial distributions.

Objects of this class hold the analysis parameters and cache some intermediate computations that do not depend
on the image data. Multiple images can be analyzed (using the same parameters) by feeding them to the object:

distr = Distributions(parameters)
results1 = distr(image1)
results2 = distr(image2)

If analyses with different parameters are required, multiple objects can be used. For example, to analyze 4
quadrants independently:
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distr0 = Distributions('ll', ...)
distr1 = Distributions('lr', ...)
distr2 = Distributions('ur', ...)
distr3 = Distributions('ul', ...)

for image in images:
Q0, Q1, Q2, Q3 = ...
res0 = distr0(Q0)
res1 = distr1(Q1)
res2 = distr2(Q2)
res3 = distr3(Q3)

However, if all the quadrants have the same dimensions, it is more memory-efficient to flip them all to the same
orientation and use a single object:

distr = Distributions('ll', ...)

for image in images:
Q0, Q1, Q2, Q3 = ...
res0 = distr(Q0)
res1 = distr(Q1[:, ::-1]) # or np.fliplr
res2 = distr(Q2[::-1, ::-1]) # or np.flip(Q2, (0, 1))
res3 = distr(Q3[::-1, :]) # or np.flipud

More concise function to calculate distributions for single images (without caching) are also available, see
harmonics(), Ibeta() below.

Parameters

• origin (tuple of int or str) – origin of the radial distributions (the pole of polar coordinates)
within the image.

(int, int):
explicit row and column indices

str:
location string specifying the vertical and horizontal positions (in this order!) using the
words from the following diagram:

left center right

top/upper [0, 0]---------[0, n//2]--------[0, n-1]
| |
| |

center [m//2, 0] [m//2, n//2] [m//2, n-1]
| |
| |

bottom/lower [m-1, 0]------[m-1, n//2]-----[m-1, n-1]

The words can be abbreviated to their first letter each (such as 'top left'→ 'tl', the
space is then not required).

'center center'/'cc' can also be shortened to 'center'/'c'.

Examples:

'center' or 'cc' (default) for the full centered image
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'center left'/'cl' for the right image half, vertically centered

'bottom left'/'bl' or 'lower left'/'ll' for the upper-right image quadrant

• rmax (int or str) – largest radius to include in the distributions

int:
explicit value

'hor':
fitting inside horizontally

'ver':
fitting inside vertically

'HOR':
touching horizontally

'VER':
touching vertically

'min':
minimum of 'hor' and 'ver', the largest area with 4 full quadrants

'max':
maximum of 'hor' and 'ver', the largest area with 2 full quadrants

'MIN' (default):
minimum of 'HOR' and 'VER', the largest area with 1 full quadrant (thus the largest with
the full 90° angular range)

'MAX':
maximum of 'HOR' and 'VER'

'all':
covering all pixels (might have huge errors at large r, since the angular dependences must
be inferred from very small available angular ranges)

• order (int) – highest order in the angular distributions, ≥ 0 (by default, 2). Requesting very
high orders (≳ 15) can result in excessive noise, especially at small radii and for narrow
peaks.

• odd (bool) – include odd angular orders. By default is False, but is enabled automatically
if order is odd. Notice that although odd orders can be extracted from the upper or lower
image part alone, analyzing the whole image is more reliable.

• use_sin (bool) – use | sin 𝜃| weighting (enabled by default). This is the weight implied in
spherical integration (for the total intensity, for example) and with respect to which the Leg-
endre polynomials are orthogonal, so using it in the fitting procedure gives the most rea-
sonable results even if the data deviates form the assumed angular behavior. It also reduces
contributions from the centerline noise.

• weights (m × n numpy array, optional) – in addition to the optional | sin 𝜃| weighting (see
use_sin above), use given weights for each pixel. The array shape must match the image
shape.

Parts of the image can be excluded from the fitting by assigning zero weights to their pixels.

(Note: if use_sin=False, a reference to this array is cached instead of its content, so if
you modify the array between creating the object and using it, the results will be surprising.
However, if needed, you can pass a copy as weights=weights.copy().)

• method (str) – numerical integration method used in the fitting procedure
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'nearest':
each pixel of the image is assigned to the nearest radial bin. The fastest, but noisier (espe-
cially for high orders).

'linear' (default):
each pixel of the image is linearly distributed over the two adjacent radial bins. About
twice slower than 'nearest', but smoother.

'remap':
the image is resampled to a uniform polar grid, then polar pixels are summed over all
angles for each radius. The smoothest, but significantly slower and might have problems
with rmax > 'MIN' and discontinuous weights.

class Results(r, cn, order, odd, valid=None)
Bases: object

Class for holding the results of image analysis.

Distributions.image() returns an object of this class, from which various distributions can be retrieved
using the methods described below, for example:

distr = Distributions(...)
res = distr(IM)
harmonics = res.harmonics()

All distributions are returned as 2D arrays with the rows (1st index) corresponding to particular terms of
the expansion and the columns (2nd index) corresponding to the radii. Odd angular terms are included only
when they are used (odd = True or order is odd), otherwise there are only 1 + order/2 rows. The terms
can be easily separated like I, beta2, beta4 = res.Ibeta(). Python 3 users can also collect all 𝛽
parameters as I, *beta = res.Ibeta() for any order. Alternatively, transposing the results as Ibeta
= res.Ibeta().T allows accessing all terms

(︀
𝐼(𝑟), 𝛽2(𝑟), 𝛽4(𝑟), . . .

)︀
at particular radius r as Ibeta[r].

r

radii from 0 to rmax
Type

numpy array

order

highest order in the angular distributions
Type

int

odd

whether odd angular orders are present
Type

bool

orders

orders for all angular terms:
[0, 2, . . . , order] for odd = False,

[0, 1, 2, . . . , order] for odd = True

Type
list of int
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sinpowers

sine powers 𝑚 in the cos𝑛 𝜃 · sin𝑚 𝜃 terms from cossin(); cosine powers 𝑛 are given by orders (see
above)

Type
list of int

valid

flags for each radius indicating whether it has valid data (radii that have zero weights for all pixels will
have no valid data)

Type
bool array

cos()

Radial distributions of cos𝑛 𝜃 terms (0 ≤ n ≤ order).

(You probably do not need them.)
Returns

cosn – radial dependences of the cos𝑛 𝜃 terms, ordered from the lowest to the highest power
Return type

(# terms) × (rmax + 1) numpy array

rcos()

Same as cos(), but prepended with the radii row.

cossin()

Radial distributions of cos𝑛 𝜃 · sin𝑚 𝜃 terms (n + m = order, and n + m = order − 1 for odd orders,
with m always even).

For order = 0:
cos0 𝜃 is the total intensity.

For order = 1:
cos0 𝜃 is the total intensity,

cos1 𝜃 is the antisymmetric component.
For order = 2

sin2 𝜃 corresponds to “perpendicular” (⊥) transitions,

cos2 𝜃 corresponds to “parallel” (‖) transitions.
For order = 4

sin4 𝜃 corresponds to ⊥,⊥,

cos2 𝜃 · sin2 𝜃 corresponds to ‖,⊥ and ⊥,‖,

cos4 𝜃 corresponds to ‖,‖.
And so on.

Notice that higher orders can represent lower orders as well:
sin2 𝜃 + cos2 𝜃 = cos0 𝜃 (⊥ + ‖ = 1),

sin4 𝜃 + cos2 𝜃 · sin2 𝜃 = sin2 𝜃 (⊥,⊥ + ‖,⊥ = ⊥,⊥ + ⊥,‖ = ⊥),

cos2 𝜃 · sin2 𝜃 + cos4 𝜃 = cos2 𝜃 (‖,⊥ + ‖,‖ = ⊥,‖ + ‖,‖ = ‖),

and so forth.

Returns
cosnsinm – radial dependences of the cos𝑛 𝜃 · sin𝑚 𝜃 terms, ordered from lower to higher
cos 𝜃 powers

Return type
(# terms) × (rmax + 1) numpy array
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rcossin()

Same as cossin(), but prepended with the radii row.

harmonics()

Radial distributions of spherical harmonics (Legendre polynomials 𝑃𝑛(cos 𝜃)).

Spherical harmonics are orthogonal with respect to integration over the full sphere:∫︁∫︁
𝑃𝑛𝑃𝑚 𝑑Ω =

∫︁ 2𝜋

0

∫︁ 𝜋

0

𝑃𝑛(cos 𝜃)𝑃𝑚(cos 𝜃) sin 𝜃𝑑𝜃 𝑑𝜙 = 0

for n ̸= m; and 𝑃0(cos 𝜃) is the spherically averaged intensity.
Returns

Pn – radial dependences of the 𝑃𝑛(cos 𝜃) terms
Return type

(# terms) × (rmax + 1) numpy array

rharmonics()

Same as harmonics(), but prepended with the radii row.

Ibeta(window=1)
Radial intensity and anisotropy distributions.

A cylindrically symmetric 3D intensity distribution can be expanded over spherical harmonics (Leg-
endre polynomials 𝑃𝑛(cos 𝜃)) as (including even and odd terms)

𝐼(𝑟, 𝜃, 𝜙) 𝑑Ω =
1

4𝜋
𝐼(𝑟)

[︀
1 + 𝛽1(𝑟)𝑃1(cos 𝜃) + 𝛽2(𝑟)𝑃2(cos 𝜃) + . . .

]︀
,

or, for distributions with top–bottom symmetry (only even terms),

𝐼(𝑟, 𝜃, 𝜙) 𝑑Ω =
1

4𝜋
𝐼(𝑟)

[︀
1 + 𝛽2(𝑟)𝑃2(cos 𝜃) + 𝛽4(𝑟)𝑃4(cos 𝜃) + . . .

]︀
,

where 𝐼(𝑟) is the “radial intensity distribution” integrated over the full sphere:

𝐼(𝑟) =

∫︁ 2𝜋

0

∫︁ 𝜋

0

𝐼(𝑟, 𝜃, 𝜙) 𝑟2 sin 𝜃𝑑𝜃 𝑑𝜙,

and 𝛽𝑛(𝑟) are the dimensionless “anisotropy parameters” describing relative contributions of each
harmonic order (𝛽0(𝑟) = 1 by definition). In particular:

𝛽2 = 2 for the cos2 𝜃 (‖) angular distribution,

𝛽2 = 0 for the isotropic distribution,

𝛽2 = −1 for the sin2 𝜃 (⊥) angular distribution.
The radial intensity distribution alone for data with arbitrary angular variations can be obtained by
using weight='sin' and order=0.

Parameters
window (int) – window size in pixels for radial averaging of 𝛽. Since anisotropy parameters
are non-linear, the central moving average is applied to the harmonics (which are linear),
and then 𝛽 is calculated from them. In case of well separated peaks, setting window to the
peak width will result in 𝛽 values at peak centers equal to total peak anisotropies (beware
of the background, however).

Returns
Ibeta – radial intensity distribution (0-th term) and radial dependences of anisotropy pa-
rameters (other terms)

Return type
(# terms) × (rmax + 1) numpy array

3.9. abel.tools.vmi module 71



PyAbel Documentation, Release 0.9.0

rIbeta(window=1)
Same as Ibeta(), but prepended with the radii row.

image(IM)
Analyze an image.

This method can be also conveniently accessed by “calling” the object itself:

distr = Distributions(...)
Ibeta = distr(IM).Ibeta()

Parameters
IM (m × n numpy array) – the image to analyze

Returns
results – the object with analysis results, from which various distributions can be retrieved,
see Results

Return type
Distributions.Results object

abel.tools.vmi.harmonics(IM, origin='cc', rmax='MIN', order=2, **kwargs)
Convenience function to calculate harmonic distributions for a single image. Equivalent to Distributions(.
..).image(IM).harmonics().

Notice that this function does not cache intermediate calculations, so using it to process multiple images is several
times slower than through a Distributions object.

abel.tools.vmi.rharmonics(IM, origin='cc', rmax='MIN', order=2, **kwargs)
Same as harmonics(), but prepended with the radii row.

abel.tools.vmi.Ibeta(IM, origin='cc', rmax='MIN', order=2, window=1, **kwargs)
Convenience function to calculate radial intensity and anisotropy distributions for a single image. Equivalent to
Distributions(...).image(IM).Ibeta(window).

Notice that this function does not cache intermediate calculations, so using it to process multiple images is several
times slower than through a Distributions object.

abel.tools.vmi.rIbeta(IM, origin='cc', rmax='MIN', order=2, window=1, **kwargs)
Same as Ibeta(), but prepended with the radii row.

3.10 abel.benchmark module

class abel.benchmark.Timent(skip=0, repeat=1, duration=0.0)
Bases: object

Helper class for measuring execution times.

The constructor only initializes the timing-procedure parameters. Use the time()method to run it for particular
functions.

Parameters

• skip (int) – number of “warm-up” iterations to perform before the measurements. Can be
specified as a negative number, then abs(skip) “warm-up” iterations are performed, but if
this took more than duration seconds, they are accounted towards the measured iterations.
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• repeat (int) – minimal number of measured iterations to perform. Must be positive.

• duration (float) – minimal duration (in seconds) of the measurements.

time(func, *args, **kwargs)
Repeatedly executes a function at least repeat times and for at least duration seconds (see above), then
returns the average time per iteration. The actual number of measured iterations can be retrieved from
Timent.count.

Parameters

• func (callable) – function to execute

• *args, **kwargs (any, optional) – parameters to pass to func

Returns
average function execution time

Return type
float

Notes

The measurements overhead can be estimated by executing

Timent(...).time(lambda: None)

with a sufficiently large number of iterations (to avoid rounding errors due to the finite timer precision). In
2018, this overhead was on the order of 100 ns per iteration.

class abel.benchmark.AbelTiming(n=[301, 501], select='all', repeat=1, t_min=0.1, t_max=inf ,
verbose=True)

Bases: object

Benchmark performance of different Abel implementations (basis generation, forward and inverse transforms,
as applicable).

Parameters

• n (int or sequence of int) – array size(s) for the benchmark (assuming 2D square arrays (n, n))

• select (str or sequence of str) – methods to benchmark. Use 'all' (default) for all available
or choose any combination of individual methods:

select=['basex', 'direct_C', 'direct_Python', 'hansenlaw',
'linbasex', 'onion_bordas, 'onion_peeling', 'two_point',
'three_point']

• repeat (int) – repeat each benchmark at least this number of times to get the average values

• t_min (float) – repeat each benchmark for at least this number of seconds to get the average
values

• t_max (float) – do not benchmark methods at array sizes when this is expected to take longer
than this number of seconds. Notice that benchmarks for the smallest size from n are always
run and that the estimations can be off by a factor of 2 or so.

• verbose (boolean) – determines whether benchmark progress should be reported (to stderr)
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n

array sizes from the parameter n, sorted in ascending order

Type
list of int

bs, fabel, iabel

benchmark results — dictionaries for

bs
basis-set generation

fabel
forward Abel transform

iabel
inverse Abel transform

with methods as keys and lists of timings in milliseconds as entries. Timings correspond to array sizes in
AbelTiming.n; for skipped benchmarks (see t_max) they are np.nan.

Type
dict of list of float

Notes

The results can be output in a nice format by simply print(AbelTiming(...)).

Keep in mind that most methods have 𝑂(𝑛2) memory and 𝑂(𝑛3) time complexity, so going from n = 501 to
n = 5001 would require about 100 times more memory and take about 1000 times longer.

class abel.benchmark.DistributionsTiming(n=[301, 501], shape='half', rmax='MIN', order=2,
weight=['none', 'sin', 'sin+array'], method='all', repeat=1, t_
min=0.1)

Bases: object

Benchmark performance of different VMI distributions implementations.

Parameters

• n (int or sequence of int) – array size(s) for the benchmark (assuming full images to be 2D
square arrays (n, n))

• shape (str) – image shape:

'Q':
one quadrant ((n + 1)/2, (n + 1)/2)

'half' (default):
half image (n, (n + 1)/2), vertically centered

'full':
full image (n, n), centered

• rmax (str or sequence of str) – 'MIN' (default) and/or 'all', see rmax in abel.tools.
vmi.Distributions

• order (int) – highest order in the angular distributions. Even number ≥ 0.

• weight (str or sequence of str) – weighting to test. Use 'all' for all available or choose any
combination of individual types:
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weight=['none', 'sin', 'array', 'sin+array']

• method (str or sequence of str) – methods to benchmark. Use 'all' (default) for all avail-
able or choose any combination of individual methods:

method=['nearest', 'linear', 'remap']

• repeat (int) – repeat each benchmark at least this number of times to get the average values

• t_min (float) – repeat each benchmark for at least this number of seconds to get the average
values

n

array sizes from the parameter n

Type
list of int

results

benchmark results — multi-level dictionary, in which results[method][rmax][weight] is the list of
timings in milliseconds corresponding to array sizes in DistributionsTiming.n. Each timing is a tuple
(t1, t∞) with t1 corresponding to single-image (non-cached) performance, and t∞ corresponding to batch
(cached) performance.

Type
dict of dict of dict of list of tuple of float

Notes

The results can be output in a nice format by simply print(DistributionsTiming(...)).

abel.benchmark.is_symmetric(arr, i_sym=True, j_sym=True)
Takes in an array of shape (n, m) and check if it is symmetric

Parameters

• arr (1D or 2D array)

• i_sym (array) – symmetric with respect to the 1st axis

• j_sym (array) – symmetric with respect to the 2nd axis

Return type
a binary array with the symmetry condition for the corresponding quadrants

Notes

If both i_sym = True and j_sym = True, the input array is checked for polar symmetry.

See issue #34 comment for the defintion of a center of the image.

abel.benchmark.absolute_ratio_benchmark(analytical, recon, kind='inverse')
Check the absolute ratio between an analytical function and the result of a inverse Abel reconstruction.

Parameters

• analytical (one of the classes from analytical, initialized)

• recon (1D ndarray) – a reconstruction (i.e. inverse abel) given by some PyAbel implemen-
tation
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Chapter 4

Transform Methods

4.1 Comparison of Abel Transform Methods

4.1.1 Abstract

This document provides a comparison of the quality and efficiency of the various Abel transform methods that are
implemented in PyAbel. Some of the information presented here is adapted from [hickstein2019].

4.1.2 Introduction

The projection of a three-dimensional (3D) object onto a two-dimensional (2D) surface takes place in many measure-
ment processes; a simple example is the recording of an X-ray image of a soup bowl, donut, egg, wineglass, or other
cylindrically symmetric object Fig. 4.1, where the axis of cylindrical symmetry is parallel to the plane of the detec-
tor. Such a projection is an example of a forward Abel transform and occurs in numerous experiments, including
photoelectron/photoion spectroscopy ([dribinski2002], [bordas1996], [chandler1987]) the studies of plasma plumes
([glasser1978]), flames ([deiluliis1998], [cignoli2001], [snelling1999], [das2017]), and solar occulation of planetary
atmospheres ([gladstone2016], [lumpe2007]). The analysis of data from these experiments requires the use of the
inverse Abel transform to recover the 3D object from its 2D projection.
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Fig. 4.1: The forward Abel transform maps a cylindrically symmetric three-dimensional (3D) object to its two-
dimensional (2D) projection, a physical process that occurs in many experimental situations. For example, an X-ray
image of the object on the left would produce the projection shown on the right. The inverse Abel transform takes the
2D projection and mathematically reconstructs the 3D object. As indicated by the Abel transform equations (below),
the 3D object is described in terms of (𝑟, 𝑧) coordinates, while the 2D projection is recorded in (𝑦, 𝑧) coordinates.

While the forward and inverse Abel transforms may be written as simple, analytical expressions, attempts to naively
evaluate them numerically for experimental images does not yield reliable results [whitaker2003]. Consequently,
many numerical methods have been developed to provide approximate solutions to the Abel transform (for ex-
ample: [dribinski2002], [bordas1996], [chandler1987], [dasch1992], [rallis2014], [gerber2013], [harrison2018],
[demicheli2017], [dick2014]). Each method was created with specific goals in mind, with some taking advantage
of pre-existing knowledge about the shape of the object, some prioritizing robustness to noise, and others offering en-
hanced computational efficiency. Each algorithm was originally implemented with somewhat different mathematical
conventions and with often conflicting requirements for the size and format of the input data. Fortunately, PyAbel
provides a consistent interface for the Abel-transform methods via the Python programming language, which allows
for a straightforward, quantitative comparison of the output.

The following sections present several comparisons of the quality and speed of the various Abel-transform algorithms
presented in PyAbel. In general, all of the methods provide reasonably quality results, with some methods providing
options for additional smoothing of the data. However, some methods are orders-of-magnitude more efficient than
others.

4.1.3 Math

The forward Abel transform is given by

𝐹 (𝑦, 𝑧) = 2

∫︁ ∞

𝑦

𝑓(𝑟, 𝑧) 𝑟√︀
𝑟2 − 𝑦2

𝑑𝑟,

where 𝑦, 𝑟, and 𝑧 are the spatial coordinates as shown in Fig. 4.1, 𝑓(𝑟, 𝑧) is the density of the 3D object at (𝑟, 𝑧), and
𝐹 (𝑦, 𝑧) is the intensity of the projection in the 2D plane.

The inverse Abel transform is given by

𝑓(𝑟, 𝑧) = − 1

𝜋

∫︁ ∞

𝑟

𝑑𝐹 (𝑦, 𝑧)

𝑑𝑦

1√︀
𝑦2 − 𝑟2

𝑑𝑦.
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While the transform equations can be evaluated analytically for some mathematical functions, experiments typically
generate discrete data (e.g., images collected with a digital camera), which must be evaluated numerically. Several
issues arise when attempting to evaluate the Abel transform numerically. First, the simplest computational interpre-
tation of inverse Abel transform equation involves three loops: over 𝑧, 𝑟, and 𝑦, respectively. Such nested loops can
be computationally expensive. Additionally, 𝑦 = 𝑟 presents a singularity where the denominator goes to zero and the
integrand goes to infinity. Finally, a simple approach requires a large number of sampling points in order to provide an
accurate transform. Indeed, a simple numerical integration of the above equations has been shown to provide unreliable
results [whitaker2003].

Various algorithms have been developed to address these issues. PyAbel incorporates numerous algorithms for the
inverse Abel transform, and some of these algorithms also support the forward Abel transform. The following com-
parisons focus on the results of the inverse Abel transform, because it is the inverse Abel transform that is used most
frequently to interpret experimental data.

Note that the forward and inverse Abel transforms are defined on the whole space, with infinite integration limits, but
in reality, experimental data are limited to finite ranges of 𝑟 or 𝑦. Thus the intensity distributions 𝑓 and 𝐹 must be zero
outside these ranges, otherwise the transforms cannot be performed correctly. In other words, only localized objects
can be transformed, and the object must be contained entirely within the image frame. If the image has any background,
it must be subtracted before applying the transform, such that the image intensity goes to zero near the edge (however,
the Direct and Hansen–Law methods effectively disregard a constant background).

4.1.4 List of Abel-Transform Methods in PyAbel

Below is a list that describes the basic approach and characteristics of all the Abel-transform algorithms implemented
in PyAbel. The title of each algorithm is the keyword that can be passed to the method argument in abel.transform.
Transform(). Algorithms that pre-compute matrices for a specific image size, and (optionally) save them to disk for
subsequent reuse, are indicated with the letter S. All methods implement the inverse Abel transform, while methods
that also implement a forward transform are indicated with an F.

• basex (F, S) – The “BAsis Set EXpansion” (BASEX) method of Dribinski and co-workers [dribinski2002] uses
a basis set of Gaussian-like functions. This is one of the de facto standard methods in photoelectron/photoion
spectroscopy [whitaker2003] and is highly recommended for general-purpose Abel transforms. The number
of basis functions and their width can be varied. However, following the basis set provided with the original
BASEX.exe program, by default the basex algorithm use a basis set where the full width at 1/𝑒2 of the maximum
is equal to 2 pixels and the basis functions are located at each pixel. Thus, the resolution of the image is roughly
maintained. The basex algorithms allows a “Tikhonov regularization” to be applied, which suppresses intensity
oscillations, producing a less noisy image. In the experimental comparisons presented below, the Tikhonov
regularization factor is set to 200, which provides reasonable suppression of noise while still preserving the fine
features in the image. See BASEX and abel.basex.basex_transform().

• onion_peeling (S) – This method, and the following two methods (three_point, two_point), are adapted
from the 1992 paper by Dasch [dasch1992]. All of these methods reduce the core Abel transform to a simple
matrix-algebra operation, which allows a computationally efficient transform. Dasch emphasizes that these tech-
niques work best in cases where the difference between adjacent points is much greater than the noise in the
projections (i.e., where the raw data is not oversampled). This “onion-peeling deconvolution” method is one of
the simpler and faster inverse Abel-transform methods. See Onion Peeling (Dasch) and abel.dasch.onion_
peeling_transform().

• three_point (S) – This “three-point” algorithm [dasch1992] provides slightly more smoothing than the similar
two_point or onion_peeling methods. The name refers to the fact that three neighboring pixels are consid-
ered, which improves the accuracy of the method for transforming smooth functions, as well as reducing the noise
in the transformed image. The trade-off is that the ability of the method to transform very sharp (single-pixel)
features is reduced. This is an excellent general-purpose algorithm for the Abel transform. See Three Point and
abel.dasch.three_point_transform().
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• two_point (S) – The “two-point method” (also described by Dasch [dasch1992]) is a simplified version of the
three_point algorithm and provides similar transform speeds. Since it only considers two adjacent points in
the function, it allows sharper features to be transformed than the three_point method, but does not offer as
much noise suppression. This method is also appropriate for most Abel transforms. See Two Point (Dasch) and
abel.dasch.two_point_transform().

• direct (F) – The “direct” algorithms [yurchak2015] uses a simple numerical integration, which closely re-
sembles the basic Abel-transform equations (above). If the direct algorithm is used in its most naive form,
the agreement with analytical solutions is poor, due to the singularity in the integral when 𝑟 = 𝑦. However,
a correction can be applied, where the function is assumed to be piecewise-linear across the pixel where this
condition is met. This simple approximation allows a reasonably accurate transform to be completed. Funda-
mentally, the direct algorithm requires that the input function be finely sampled to achieve good results. PyAbel
incorporates two implementations of the direct algorithm, which produce identical results, but with different
calculation speeds. The direct_Python implementation is written in pure Python, for easy interpretation and
modification. The direct_C implementation is written in Cython, a Python-like language that is converted to
C and compiled, providing higher computational efficiency. This method is included mainly for educational and
comparison purposes. In most cases, other methods will provide more reliable results and higher computational
efficiency. See Direct and abel.direct.direct_transform().

• hansenlaw (F) – The recursive method of Hansen and Law ([hansen1985], [hansen1985b], [gascooke2000])
interprets the Abel transform as a linear space-variant state-variable equation, to provide a reliable, computa-
tionally efficient transform. The hansenlaw method also provides an efficient forward Abel transform. It is
recommended for most applications. See Hansen–Law and abel.hansenlaw.hansenlaw_transform().

• linbasex (S) – The “lin-BASEX” method of Gerber et al. [gerber2013] models the 2D projection using spher-
ical functions, which evolve slowly as a function of polar angle. Thus, it can offer a substantial increase in
signal-to-noise ratio in many situations, but it is only appropriate for transforming certain projections that
are appropriately described by these basis functions. This is the case for typical velocity-map-imaging pho-
toelectron/photoion spectroscopy [chandler1987] experiments, for which the algorithm was designed. However,
for example, it would not be appropriate for transforming the object shown in Fig. 4.1. The algorithm directly pro-
duces the coefficients of the involved spherical functions, which allows both the angular and radially integrated
distributions to be produced analytically. This ability, combined with the strong noise-suppressing capability of
using smooth basis functions, can aid the interpretation of photoelectron/photoion distributions. See Lin-Basex
and abel.linbasex.linbasex_transform().

• onion_bordas – The onion-peeling method of Bordas et al. [bordas1996] is a Python adaptation of the MAT-
LAB implementation of Rallis et al. [rallis2014]. While it is conceptually similar to the onion_peeling
method, the numerical implementation is significantly different. This method is reasonably slow, and is there-
fore not recommended for general use. See Onion Peeling (Bordas) and abel.onion_bordas.onion_bordas_
transform()

• rbasex (F, S) – The rBasex method is based on the pBasex method of Garcia et al. [garcia2004], using basis
functions developed by Ryazanov [ryazanov2012]. This method evaluates radial distributions of velocity-map
images and transforms them to radial distributions of the reconstructed 3D distributions. Similar to linbasex,
the rbasex method makes additional assumptions about the symmetry of the data is not applicable to all situa-
tions. See rBasex and abel.rbasex.rbasex_transform().

• daun (F, S) – The method by Daun et al. [daun2006] applies Tikhonov regularization to onion-peeling decon-
volution. It is conceptually similar to “BASEX” (basex), but instead of 𝐿2 regularization uses the first-order
difference operator (approximating the derivative operator) as the Tikhonov matrix to suppress high-frequency
oscillations, making the transform less sensitive to perturbations in the projected data. The PyAbel implementa-
tion also includes several extensions to the original method. First, in addition to the rectangular basis functions
implied in onion peeling, explicit basis sets of piecewise polynomials up to 3rd degree (cubic splines) can be
chosen. Second, the𝐿2 regularization (as in BASEX) is implemented for comparison. And most importantly, the
non-negative least-squares solution to the deconvolution problem can be obtained, which produces meaningful
results in situations where the transformed intensities must not be negative, and at the same time greatly reduces
the baseline noise. See Daun and abel.daun.daun_transform().
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4.1.5 Implementation

The abel.transform.Transform() class provides a uniform interface to all of the transform methods, as well as
numerous related functions for centering and symmetrizing the input images. So, this interface can be used to quickly
switch between transform methods to determine which method works best for a specific dataset.

Generating a sample image, performing a forward Abel transform, and completing an inverse Abel transform requires
just a few lines of Python code:

import abel
im0 = abel.tools.analytical.SampleImage().func
im1 = abel.Transform(im0,

direction='forward',
method='hansenlaw').transform

im2 = abel.Transform(im1,
direction='inverse',
method='three_point').transform

Choosing a different method for the forward or inverse transform requires only that the method argument be changed.
Additional arguments can be passed to the individual transform functions using the transform_options argument.
A basic graphical user interface (GUI) for PyAbel is also available as example_GUI.py in the examples directory.

In addition to the transform methods themselves, PyAbel provides many of the pre-processing methods required to ob-
tain optimal Abel transforms. For example, an accurate Abel transform requires that the center of the image is properly
identified. Several approaches allow to perform this identification in PyAbel, including the center-of-mass, convolution,
and Gaussian-fitting. Additionally, PyAbel incorporates a “circularization” method [gascooke2017], which allows the
correction of images that contain features that are expected to be circular (such as photoelectron and photoion momen-
tum distributions). Moreover, the abel.tools module contains a host of post-processing algorithms, which provide,
for example, efficient projection into polar coordinates and radial or angular integration.

4.1.6 Conventions

The conventions for PyAbel are listed in the Conventions section of the PyAbel README.

In order to provide similar results, PyAbel ensures that the numerical conventions are consistent across the various
transform methods. For example. when dealing with pixel data, an ambiguity arises: do intensity values of the pixels
represent the value of the data at 𝑟 = {0, 1, 2, ..., 𝑛 − 1}, where 𝑛 is an integer, or do they correspond to 𝑟 =
{0.5, 1.5, 2.5, ..., 𝑛−0.5}? Either convention is reasonable, but comparing results from methods that adopt differing
conventions can lead to small but significant shifts. PyAbel adopts the convention that the pixel values correspond to 𝑟 =
{0, 1, 2, ..., 𝑛−1}. One consequence of this is that, when considering an experimental image that contains both the left
and right sides of the image, the total image width must be odd, such that 𝑟 = {1−𝑛, ..., −2, −1, 0, 1, 2, ..., 𝑛−1}.
A potential disadvantage of our “odd image” convention is that 2D detectors typically have a grid of pixels with an
even width (for example, a 512×512-pixel camera). If the image were perfectly centered on the detector, the odd-
image convention would not match the data, and a half-pixel shift would be required. However, in nearly all real-world
experiments, the image is not perfectly centered on the detector and a shift of several pixels is required, so the additional
half-pixel shift is of no significance.

A similar ambiguity exists with regards to the left–right and top–bottom symmetry of the image. In principle, since the
Abel transform assumes cylindrical symmetry, left–right symmetry should always exist, and it should only be necessary
to record one side of the projection. However, many experiments record both sides of the projection. Additionally, many
experiments record object that possess top–bottom symmetry. Thus, in some situations, it is best to average all of the
image quadrants into a single quadrant and perform a single Abel transform on this quadrant. On the other hand,
the quadrants may not be perfectly symmetric due to imperfections or noise in the experiment, and it may be best
to perform the Abel transform on each quadrant separately and select the quadrant that produces the highest-quality
data. PyAbel offers full flexibility, providing the ability to selectively enforce top–bottom and left–right symmetry,
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and to specify which quadrants are averaged. By default, each quadrant is processed separately and recombined into
in composite image that does not assume either top–bottom or left–right symmetry. For more details, see abel.
transform.Transform().

In the following performance benchmarks, left–right symmetry is assumed, because this is the most common bench-
mark presented in other studies ([rallis2014], [harrison2018]). However, the image size is listed as the width of a square
image. For example, 𝑛 = 513 corresponds to the time for the transformation of a 513×513-pixel image with the axis
of symmetry located in the center. Since the Abel transform makes the assumption of cylindrical symmetry, both sides
of the image are identical, and it is sufficient to perform the Abel transform on only one side of the image, or on an
average of the two sides. So, to complete an Abel transform of a typical 513×513-pixel image, it is only necessary to
perform the Abel transform on a 513×257-pixel array.

Another fundamental question about real-world Abel transforms is whether negative values are allowed in the transform
result. In most situations, negative values are not physical, and some implementations set all negative values to zero.
In contrast, PyAbel allows negative values, which enables its use in situations where negative values are physically
reasonable. Moreover, maintaining negative values keeps the transform methods linear and gives users the option to
average, smooth, or fit images either before or after the Abel transform without causing a systematic error in the baseline.
Suppression of negative values in a transformed image im can easily be achieved by executing im[im<0] = 0. On
the other hand, the daun and rbasex methods offer optional non-linear regularization methods specifically designed
to produce non-negative values without systematically shifting the baseline. It is recommended to use them instead of
artificially zeroing negative values in situations where negative values are undesirable but the transform speed is not
essential.

4.1.7 Comparison of Transform Results

Since PyAbel incorporates numerous Abel-transform methods into the same interface, it is straightforward to directly
compare the results. Consequently, a good approach is to simply try several (or all!) of the transform methods and see
which produces the best results or performance for a specific application. Nevertheless, the following provides a brief
comparison of the various transform methods in several cases. First, the methods are applied to a simple Gaussian
function (for which an analytical Abel transform exists) in order to assess the accuracy of each transform method.
Second, each method is applied to a “comb” function constructed of narrow peaks with noise added in order to closely
examine the fundamental resolution of each method and how noise accumulates. Third, each method is used to provide
the inverse Abel transform a high-resolution photoelectron-spectroscopy image in order to examine the ability of each
method to handle real-world data.

The Abel transform of a Gaussian is simply a Gaussian, which allows a comparison of each numerical transform method
with the analytical result in the case of a one-dimensional (1D) Gaussian (Fig. 4.2). As expected, each transform method
exhibits a small discrepancy compared with the analytical result. However, as the number of pixels is increased, the
agreement between the transform and the analytical result improves. Even with only 70 points (the case shown in Fig.
4.2), all of the method produce reasonable agreement. While all methods show a systematic error as 𝑟 approaches zero,
the basex, daun (especially with 3rd-degree basis functions), three_point, and onion_peeling methods seem to
provide the best agreement with the analytical result. The direct methods show fairly good agreement with the analytical
curve, which is a result of the “correction” discussed above. We note that the results from the direct_Python and the
direct_C methods produce identical results to within a factor of 10−9.
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Fig. 4.2: Comparison of inverse Abel-transform methods for a 1D Gaussian function with 70 points. All of the inverse
Abel transform methods show reasonable agreement for the inverse Abel transform of a Gaussian function. The root-
mean-square error (RMSE) for each method is listed in the figure legend. In the limit of many pixels, the error trends
to zero. However, when a small number of pixels is used, systematic errors are seen, especially near the origin (𝑟 = 0).
The error near the origin is more pronounced in some methods than others. The lowest error seen from the basex, daun,
three_point, and onion_peeling methods. The daun method with degree=0 is identical to onion_peeling and
with degree=2 is slightly better (RMSE=0.05%). The linbasex and rbasex methods are not included in this figure
because they are not applicable to 1D functions.

Applying the various transform methods to a synthetic “comb” function that consists of triangular peaks with one-
pixel halfwidth – the sharpest features representable on the pixel grid – allows the fundamental resolution of each
method to be visualized (Fig. 4.3). In order to provide an understanding of how each method responds to noise, the
function transformed in Fig. 4.3 also has uniformly distributed random noise added to each pixel. The figure reveals that
some methods (basex, daun, hansenlaw, onion_peeling, and two_point) are capable of faithfully reproducing
the sharpest features, while other methods (direct, onion_bordas, and three_point) provide some degree of
smoothing. In general, the methods that provide the highest resolution also produce the highest noise, which is most
obvious at low r values. The exception is the basex and daun methods using a moderate regularization factor (Fig.
4.3 b, c), which exhibit low noise near the center, while still displaying good resolution. The daun method with non-
negativity regularization (Fig. 4.3 d), besides producing no negative values, significantly suppresses the baseline noise
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without affecting the sharp features. Thus, it seems that experiments that benefit from an optimal balance of noise
suppression and resolution would benefit from inverse Abel-transform methods that incorporate regularization.
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Fig. 4.3: Inverse Abel-transform methods applied to a synthetic “comb” function of one-pixel-width peaks with noise
added. The gray line represents the analytical inverse Abel transform in the absence of noise. Some methods reproduce
the height of the peaks, while other methods reduce noise while somewhat smoothing the peaks. The regularization
in the basex and daun methods provides strong noise suppression near the origin, while maintaining peak height at
higher values of 𝑟. The daun method without regularization is identical to onion_peeling, and its 𝐿2 regularization
is very similar to basex regularization.

Applying the various inverse Abel-transform methods to an experimental photoelectron-spectroscopy image (photo-
electron spectrum of O2

− photodetachment using a 455 nm laser, as described by Van Duzor et al. [vanduzor2010])
provides a comparison of how the noise in the reconstructed image depends on the transform method (Fig. 4.4).
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Fig. 4.4: Comparison of inverse Abel-transform methods applied to an experimental photoelectron velocity-map im-
age. While all methods provide a faithful reconstruction of the experimental image, some of them cause a greater
amplification of the noise present in the original image. The linbasex and rbasex methods models the image using
a basis set of functions that vary slowly as a function of angle, which strongly reduces the high-frequency noise seen
in the other transform methods. Besides the basex and daun method with regularization, the direct and three_
pointmethods seem particularly suited for providing a low-noise transform. The daunmethod without regularization
is identical to onion_peeling, and its 𝐿2 regularization is very similar to basex regularization.
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To a first approximation, the results of all the transform methods look similar. The rbasex and linbasex methods
produces the “smoothest” image, which is a result of the fact that it models the projection using functions fitted to
the image, that vary only slowly as a function of angle. The basex and daun methods incorporate a user-adjustable
Tikhonov regularization factor, which tends to suppress noise, especially near the symmetry axis. Here, we set the reg-
ularization factor to 200 for basex and 100 for daun, which provides significant noise suppression without noticeable
broadening of the narrow features. When the regularization factor is set to zero, the basex and daun methods provide
a transform that appears very similar to the onion_peeling method. For the other transform methods, the direct
and three_point methods appear to have the strongest noise-filtering properties.
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Fig. 4.5: Comparison of photoelectron spectra obtained by angular integration of the transformed images shown in Fig.
4.4, corresponding to various inverse Abel-transform methods applied to the same experimental velocity-map image.
a) Looking at the entire photoelectron speed distribution, all of the transform methods appear to produce similar results.
b) Closely examining two of the peaks shows that all of the methods produce similar results, but that some methods
produce broader peaks than others. c) Examining the small peaks in the low-energy region reveals that some methods
accumulate somewhat more noise than others. Notice the absence on negative intensities in the daun method with
non-negativity regularization and the corresponding suppression of baseline oscillations.
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Fig. 4.5 uses the same dataset as Fig. 4.4, but with an angular integration performed to show the 1D photoelectron
spectrum. Good agreement is seen between most of the methods, even on a one-pixel level. Small but noticeable
differences can be seen in the broadness of the peaks (Fig. 4.5b). The hansenlaw, onion_peeling and two_point
methods show the sharpest peaks, suggesting that they provide enhanced ability to resolve sharp features. Of course,
the differences between the methods are emphasized by the very high resolution of this dataset. In most cases, more
pixels per peak yield a much better agreement between the transform methods. Interestingly, the linbasex method
shows more baseline noise than the other methods. Fig. 4.5c shows a close examination of the two lowest-energy peaks
in the image. The methods that produce that sharpest peaks (hansenlaw, onion_peeling, and two_point) also
exhibit somewhat more noise than the rest (except linbasex).

4.1.8 Efficiency optimization

High-level efficiency optimization

For many applications of the inverse Abel transform, the speed at which transform can be completed is important.
Even for those who are only aiming to transform a few images, the ability to perform Abel transforms efficiently may
enable more effective data analysis. For example, faster Abel-transform method allow many different schemes for noise
removal, smoothing, centering, and circularization to be explored more rapidly and effectively.

While PyAbel offers improvements to the raw computational efficiency of each transform method, it also provides
improvements to the efficiency of the overall workflow, which are likely to provide a significant improvements for most
applications. For example, since PyAbel provides a straightforward interface to switch between different transform
methods (using abel.transform.Transform()), a comparison of the results from each method can easily be made
and the fastest method that produces acceptable results can be selected. Additionally, PyAbel provides fast algorithms
for angular and radial integration, which can be the rate-limiting step for some data-processing workflows.

In addition, when the computational efficiency of the various Abel transform methods is evaluated, a distinction must
be made between those methods that can pre-compute, save, and re-use information for a specific image size (basex,
daun, linbasex, onion_peeling, rbasex, three_point, two_point) and those that do not (direct, hansenlaw,
onion_bordas). Often, the time required for the pre-computation is orders of magnitude longer than the time required
to complete the transform. One solution to this problem is to pre-compute information for a specific image size and
provide this data as part of the software. Indeed, the popular BASEX application [dribinski2002] includes a “basis
set” for transforming 1000×1000-pixel images. While this approach relieves the end user of the computational cost of
generating basis sets, it often means that the ideal basis set for efficiently transforming an image of a specific size is
not available. Thus, “padding” is necessary for smaller images, resulting in increased computational time, while larger
higher-resolution images must be downsampled or cropped.

PyAbel provides the ability to pre-compute information for any image size and cache it to disk for future use. Moreover,
a cached basis set intended for transforming a larger image can be automatically cropped for use on a smaller image,
avoiding unnecessary computations. The basex algorithm in PyAbel also includes the ability to extend a basis set
intended for transforming a smaller image for use on a larger image. This allows the ideal basis set to be efficiently
generated for an arbitrary image size.

Low-level computational efficiency

General Advice

Transforming very large images, or a large number of images, requires inverse Abel-transform methods with high com-
putational efficiency. PyAbel is written in Python, a high-level programming language that is easy to read, understand,
and modify. A common criticism of high-level interpreted (non-compiled) languages like Python is that they provide
significantly lower computational efficiency than low-level compiled languages, such as C or Fortran. However, such
slowdowns can be avoided by calling functions from optimized math libraries for the key operations that serve as bot-
tlenecks. For most of the transform methods (and indeed, all of the fastest methods), the operation that bottlenecks the
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transform process is a matrix-algebra operation, such as matrix multiplication. PyAbel uses matrix-algebra functions
provided by the NumPy library, which are, in turn, provided by the Basic Linear Algebra Subprograms (BLAS) library.
Thus, the algorithms in PyAbel have comparable performance to optimized C/Fortran.

One subtle consequence of this reliance on the BLAS algorithms is that the performance is dependent on the exact
implementation of BLAS that is installed, and users seeking the highest level of performance may wish to experiment
with different implementations. Different NumPy/SciPy distributions use different libraries by default, and some also
provide a choice between several libraries. If the transform speed is important, it is advisable to run the benchmarks on
all available configurations to select the fastest for the specific combination of the transform method, operating system
and hardware.

Among the widely available options, the Intel Math Kernel Library (MKL) generally provides the best performance
for Intel CPUs, although its installed size is rather huge and its performance on AMD CPUs is quite poor. It is used by
default in Anaconda Python. OpenBLAS generally provides the best performance for AMD CPUs and reasonably good
performance for Intel CPUs. It is used by default in some distributions. AMD develops numerical libraries optimized
for its own CPUs, but they are not yet officially integrated with NumPy/SciPy.

Another important issue for modern Intel CPUs is that they suffer a performance degradation when denormal numbers
are encountered, which sometimes happens in the intermediate calculations even if the input and output are “normal”.
In this case, configuring the CPU to treat denormals as zeros does help. There is no official way to achieve this in
NumPy/SciPy, but a third-party module daz can be used for this purpose. At least some modern AMD CPUs are less
or not affected by this issue, although it’s always better to run the tests to make sure.

Speed benchmarks

The abel.benchmark.AbelTiming class provides the ability to benchmark the speeds of the Abel transform algo-
rithms. Here we show these benchmarks completed using a personal computer equipped with a 3.0 GHz Intel i7-9700
processor and 32 GB RAM running GNU/Linux (see also Additional speed benchmarks for some other systems).

A comparison of the time required to complete an inverse Abel transform versus the width of a square image is presented
in Fig. 4.6. All methods are benchmarked using their default parameters, with the following exceptions:

• basex(var) and daun(var) mean “variable regularization”, that is changing the regularization parameter for each
transformed image.

• daun(nonneg) shows only the result of transforming the O2
− image (see Fig. 4.4) with non-negativity regular-

ization. Since the time needed for this non-linear transform strongly depends on the data, it is impossible to
provide “universal” benchmarks; however, the general scaling is also expected to be roughly cubic.

• direct_C and direct_Python correspond to the “direct” method using its C (Cython) and Python backends re-
spectively.

• linbasex and rbasex show whole-image (n × n) transforms, while all other methods show half-image (n rows,
(n + 1)/2 columns) transforms.

• rbasex(None) means no output-image creation (only the transformed radial distributions).
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Fig. 4.6: Computational efficiency of inverse Abel-transform methods. The time to complete an inverse Abel transform
increases with the size of the image. Most of the methods display a roughly 𝑛3 scaling (dashed gray line). The basex,
onion_peeling, three_point, and two_point methods all rely on similar matrix-algebra operations as their rate-
limiting step, and consequently exhibit identical performance for typical experimental image sizes.

Fig. 4.6 reveals the computational scaling of each method as the image size is increased. At image sizes below 𝑛 = 100,
most of the transform methods exhibit a fairly flat relationship between image size and transform time, suggesting that
the calculation is limited by the computational overhead. For image sizes of 1000 pixels and above, all the methods
show a steep increase in transform time with increasing image size. A direct interpretation of the integral for the
inverse Abel transform involves three nested loops, one over 𝑧, one over 𝑟, and one over 𝑦, and we should expect
𝑛3 scaling. Indeed, the direct_C and direct_Python methods scale as nearly 𝑛3. Several of the fastest meth-
ods (basex, onion_peeling, three_point, and two_point) rely on matrix multiplication (or back substitution
in case of daun). These methods also scale roughly as 𝑛3, which is approximately the expected scaling for matrix-
multiplication operations [coppersmith1990]. For typical image sizes (~500–1000 pixels width), basex, daun and the
methods of Dasch [dasch1992] consistently out-perform other methods, often by several orders of magnitude. Inter-
estingly, the hansenlaw and rbasex algorithms exhibits a nearly 𝑛2 scaling and should outperform other algorithms
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for large image sizes. While the linbasex method does not provide the fastest transform, we note that it analytically
provides the angular-integrated intensity and anisotropy parameters. Thus, if those parameters are desired outcomes –
as they often are during the analysis of photoelectron spectroscopy datasets – then linbasex may provide an efficient
analysis. The rbasex method also provides the intensity and anisotropy distributions directly. Moreover, if only these
qualities are needed, without the transformed image, the transform can be completed faster and starts to outperform the
fastest general-purpose methods for image sizes of ≳1000 pixels (extracting the desired distributions from the results
of these methods requires additional time, not included in their plotted transform times).
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Fig. 4.7: The performance can also be viewed as a pixels-per-second rate. Here, it is clear that some methods provide
sufficient throughput to transform images at rates far exceeding high-definition video (1000×1000 pixels at 30 frames
per second is 3× 107 pixels per second).
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Fig. 4.8: Computational efficiency of the basis-set generation calculation.

The basex, onion_peeling, three_point, and two_point methods run much faster if appropriately sized basis
sets have been pre-calculated. For the basex method, the time for this pre-calculation is orders of magnitude longer
than the transform time (Fig. 4.8). For the Dasch methods (onion_peeling, three_point, and two_point), the pre-
calculation is significantly longer than the transform time for image sizes smaller than 2000 pixels. For larger image
sizes, the pre-calculation of the basis sets approaches the same speed as the transform itself. In particular, for the two_
pointmethod, the pre-calculation of the basis sets actually becomes faster than the image transform for n ≳ 4000. For
the daun and linbasex methods, the pre-calculation of the basis sets is consistently faster than the transform itself,
suggesting that the pre-calculation of basis sets isn’t necessary for these methods.
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4.1.9 Conclusion

The various Abel-transform methods in PyAbel provide advantages for different situations. Nevertheless, certain rec-
ommendations can be made.

Methods recommended for general-purpose Abel transforms:

• basex

• daun

• hansenlaw

• three-point

• two-point

• onion-peeling

• direct

Methods recommended for photoelectron/photoion datasets, or for images with similar shape:

• rbasex

• linbasex

Methods recommended for educational purposes only (these methods are generally slower and somewhat less accurate
than competing transform methods):

• onion_bordas

Additional speed benchmarks

• Intel i7-9700 (Linux)

• Intel i7-6700 (Linux)

• AMD Ryzen 5 5600G (Linux)

• AMD Ryzen 5 5600G (Windows)

• Raspberry Pi 4B (Linux)

All methods are benchmarked using their default parameters, with the following exceptions:

• basex(var) and daun(var) mean “variable regularization”, that is changing the regularization parameter for each
transformed image.

• direct_C and direct_Python correspond to the “direct” method using its C (Cython) and Python backends re-
spectively.

• linbasex and rbasex show whole-image (n × n) transforms, while all other methods show half-image (n rows,
(n + 1)/2 columns) transforms.

• rbasex(None) means no output-image creation (only the transformed radial distributions).
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Intel i7-9700 (Linux)

CPU
Intel Core i7-9700 (8 cores, 8 threads; 3.0 GHz base, 4.7 GHz max)

RAM
32 GB DDR4-2666

OS
Ubuntu 20.04 LTS

Libraries

• NumPy 1.18.1

• SciPy 1.4.1

• MKL 2020

• daz
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Intel i7-6700 (Linux)

CPU
Intel Core i7-6700 (4 cores, 8 threads; 3.4 GHz base, 4.0 GHz max)

RAM
32 GB DDR4-2133

OS
Ubuntu 19.10

Libraries

• NumPy 1.18.1

• SciPy 1.4.1

• MKL 2019 Update 5
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• daz

Results

101 102 103 104 105

Image size (n, pixels)

10 6

10 5

10 4

10 3

10 2

10 1

100

101

102

103

104

Tr
an

sf
or

m
 ti

m
e 

(s
ec

on
ds

)

    
 (c

ub
ic 

sca
lin

g)

basex
basex(var)
daun
daun(var)
direct_C
direct_Python
hansenlaw
onion_bordas
onion_peeling
three_point
two_point
linbasex
rbasex
rbasex(None)

4.1. Comparison of Abel Transform Methods 97

https://github.com/chainer/daz


PyAbel Documentation, Release 0.9.0

101 102 103 104 105

Image size (n, pixels)

104

105

106

107

108

109
Th

ro
ug

hp
ut

 (p
ixe

ls 
pe

r s
ec

on
d)

HD video

basex
basex(var)
daun
daun(var)
 

direct_C
direct_Python
hansenlaw
onion_bordas
onion_peeling

three_point
two_point
linbasex
rbasex
rbasex(None)

98 Chapter 4. Transform Methods



PyAbel Documentation, Release 0.9.0

101 102 103 104 105

Image size (n, pixels)

10 4

10 3

10 2

10 1

100

101

102

103

104

Ba
sis

-s
et

 g
en

er
at

io
n 

tim
e 

(s
ec

on
ds

)

    
  (q

ua
dra

tic
 sc

ali
ng

)

basex
daun
onion_peeling
three_point
two_point
linbasex
rbasex

AMD Ryzen 5 5600G (Linux)

CPU
AMD Ryzen 5 5600G (6 cores, 12 threads; 3.9 GHz base, 4.4 GHz max)

RAM
32 GB DDR4-3200

OS
Debian GNU/Linux 12

Libraries

• NumPy 1.24.2

• SciPy 1.10.1

• OpenBLAS 0.3.21
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AMD Ryzen 5 5600G (Windows)

CPU
AMD Ryzen 5 5600G (6 cores, 12 threads; 3.9 GHz base, 4.4 GHz max)

RAM
32 GB DDR4-3200

OS
Microsoft Windows 11

Libraries

• NumPy 1.26.0

• SciPy 1.11.2

• OpenBLAS 0.3.23
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Raspberry Pi 4B (Linux)

CPU
Broadcom BCM2711 (4 cores; 1.5 GHz)

RAM
4 GB LPDDR4-3200

OS
Raspbian GNU/Linux 10

Libraries

• NumPy 1.16.2

• SciPy 1.1.0

• Reference BLAS 3.8.0
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4.2 BASEX

4.2.1 Introduction

The BASEX (“basis set expansion”) Abel-transform method utilizes well-behaved functions (i.e., functions that have
a known analytic Abel transform) to transform images. In the current iteration of PyAbel, these functions (called basis
functions) are Gaussian-like functions, following the original description of the method, developed in 2002 at USC and
UC Irvine by Dribinski, Ossadtchi, Mandelshtam, and Reisler1.

1 V. Dribinski, A. Ossadtchi, V. A. Mandelshtam, H. Reisler, “Reconstruction of Abel-transformable images: The Gaussian basis-set expansion
Abel transform method”, Rev. Sci. Instrum. 73, 2634–2642 (2002), (PDF).
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4.2.2 How it works

This method is based on expressing line-of-sight projection images (raw_data) as sums of functions that have known
analytic Abel inverses. The provided raw images are expanded in a basis set composed of these basis functions, with
the expansion coefficients determined through a least-squares fitting process. These coefficients are then applied to the
(known) analytic inverse of these basis functions, which directly provides the Abel inverse of the raw images. Thus,
the transform can be completed using simple linear algebra.

In the current iteration of PyAbel, these basis functions are Gaussian-like (see equations (14) and (15) inPage 108, 1). The
process of evaluating these functions is computationally intensive, and the basis-set generation process can take several
seconds to minutes for larger images (larger than ~1000×1000 pixels). However, once calculated, these basis sets can
be reused, and are therefore stored on disk and loaded quickly for future use. The transform then proceeds very quickly,
since each raw-image Abel inversion is a simple matrix multiplication.

4.2.3 When to use it

According to Dribinski et al., BASEX has several advantages:

1. For synthetic noise-free projections, BASEX reconstructs an essentially exact and artifact-free image, eschewing
the need for interpolation procedures, which may introduce additional errors or assumptions.

2. BASEX is computationally cheap and only requires matrix multiplication, once the basis sets have been generated
and saved to disk.

3. The current basis set is composed of the Gaussian-like functions, which are highly localized, uniform in coverage,
and sufficiently narrow. This allows resolution of very sharp features in the raw data. Moreover, the reconstruc-
tion procedure does not contribute to noise in the reconstructed image; noise appears in the image only when it
exists in the projection.

4. Resolution of images reconstructed with BASEX is superior to those obtained with the Fourier–Hankel method,
particularly for noisy projections. However, to obtain maximal resolution, it is important to properly center the
projections prior to transforming with BASEX.

5. BASEX-reconstructed images have an exact analytical expression, which allows an analytical high-resolution
calculation of the speed distribution, without increasing computation time. (This is not yet implemented in
PyAbel.)

4.2.4 How to use it

The recommended way to complete the inverse Abel transform using the BASEX algorithm for a full image is to use
the abel.Transform class:

abel.Transform(raw_image, method='basex', direction='inverse').transform

The additional BASEX parameters are described in abel.basex.basex_transform() an can be passed to
Transform using the transform_options argument.

If you would like to access the BASEX algorithm directly (to transform a right-side half-image), you can use abel.
basex.basex_transform().

The behavior of the original BASEX.exe program by Karpichev with top–bottom symmetry and the “narrow” basis set
can be reproduced as follows:

rescale = math.sqrt(math.pi) / 2

raw_image = <centered raw image>
(continues on next page)
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(continued from previous page)

reg = <regularization parameter>
reconst = abel.Transform(raw_image, direction='inverse', symmetry_axis=(0, 1),

method='basex', transform_options=dict(
reg=reg*(rescale**2), correction=False

)).transform.clip(min=0) * rescale

(The rescale factor accounts for the wrong factor used in the BASEX.exe program for the basis projections, see BASEX:
computational details.)

4.2.5 PyAbel improvements

• As noted above, the BASEX method implementation in PyAbel uses correct expressions for the basis projections,
so unlike BASEX.exe, it is consistent with the original method description inPage 108, 1 and with other methods
implemented in PyAbel.

• Basis sets for any image size are generated automatically.

• Basis functions with any width parameter 𝜎 (specified by the sigma parameter) can be used. They are 𝜌𝑘(𝑟) ≈
exp[−2(𝑟/𝜎 − 𝑘)2], so their 1/𝑒2 width is 2𝜎, and the full width at half-maximum (FWHM) is

√
2 ln 2𝜎 ≈

1.18𝜎. The spacing between the maxima of the adjacent basis functions is 𝜎, which automatically determines
the number of basis functions.

• An automatic intensity correction is available (enabled by default) for reducing the artifacts caused by the basis-
functions shape and the sampling of their projections, as well as the intensity drop (especially near the axis)
introduced by Tikhonov regularization.

• The forward Abel transform is also implemented, using the same method but swapping the basis functions and
their projections.

Some additional information on the implementation is given in BASEX: computational details.

4.2.6 Citation

• V. Dribinski, A. Ossadtchi, V. A. Mandelshtam, H. Reisler, “Reconstruction of Abel-transformable images: The
Gaussian basis-set expansion Abel transform method”, Rev. Sci. Instrum. 73, 2634–2642 (2002), (PDF).

BASEX: computational details

To complement the general description given in the BASEX article, here we provide the full derivation of the basis
projections and the details needed for their efficient computation. The differences in the PyAbel implementation of the
method are also discussed below.

Basis projections

The basis functions are

𝜌𝑘(𝑟) = (𝑒/𝑘2)𝑘
2

(𝑟/𝜎)2𝑘
2

𝑒−(𝑟/𝜎)2 ,

or in a reduced form,

𝜌𝑘(𝑢) = 𝐴𝑘 𝑢
2𝑘2

𝑒−𝑢2

,
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𝐴𝑘 = (𝑒/𝑘2)𝑘
2

, 𝑢 = 𝑟/𝜎.

Their Abel transform is most easily obtained by considering the projection in rectangular coordinates:

𝜒𝑘(𝑥) =

∫︁ ∞

−∞
𝜌𝑘(𝑟) 𝑑𝑦 = 2

∫︁ ∞

0

𝜌𝑘(𝑟) 𝑑𝑦,

𝑟 =
√︀

𝑥2 + 𝑦2.

Then ∫︁ ∞

0

(︁√︀
𝑥2 + 𝑦2

)︁2𝑘2

𝑒−(𝑥
2+𝑦2) 𝑑𝑦 =

∫︁ ∞

0

(︀
𝑥2 + 𝑦2

)︀𝑘2

𝑒−𝑥2

𝑒−𝑦2

𝑑𝑦.

After expanding the binomial
(︀
𝑥2 + 𝑦2

)︀𝑘2

, this integral becomes

𝑒−𝑥2
𝑘2∑︁
𝑙=0

(︂
𝑘2

𝑙

)︂
𝑥2𝑙

∫︁ ∞

0

𝑦2(𝑘
2−𝑙)𝑒−𝑦2

𝑑𝑦,

where the binomial coefficients (︂
𝑘2

𝑙

)︂
=

𝑘2!

𝑙! (𝑘2 − 𝑙)!
=

Γ(𝑘2 + 1)

Γ(𝑙 + 1)Γ(𝑘2 − 𝑙 + 1)
,

and the integrals are also expressed through the gamma function:∫︁ ∞

0

𝑦2(𝑘
2−𝑙)𝑒−𝑦2

𝑑𝑦
𝑡=𝑦2

=

∫︁ ∞

0

𝑡𝑘
2−𝑙𝑒−𝑡 1

2
√
𝑡
𝑑𝑡 =

1

2
Γ

(︂
𝑘2 − 𝑙 +

1

2

)︂
.

The complete expression for the projections (in a reduced form, 𝑢 = 𝑥/𝜎) is thus

𝜒𝑘(𝑢) = 𝐴𝑘𝜎𝑒
−𝑢2

𝑘2∑︁
𝑙=0

Γ(𝑘2 + 1)Γ
(︀
𝑘2 − 𝑙 + 1

2

)︀
Γ(𝑙 + 1)Γ(𝑘2 − 𝑙 + 1)

𝑢2𝑙.

The case 𝑘 = 0 is special, since formally 𝐴0 = (𝑒/0)0, which is undefined. However, taking the limit 𝑘 → 0, we
obtain

𝜌0(𝑢) = 𝑒−𝑢2

,

the Abel transform of which is simply

𝜒0(𝑢) =
√
𝜋 𝜎𝑒−𝑢2

.

Note: The original MATLAB implementation by Dribinski used an incorrect prefactor “2” instead of “
√
𝜋” in calcula-

tions of the basis projections 𝜒𝑘 (in the above expression the
√
𝜋 factor for 𝑘 > 0 is invisibly present in the Γ(. . .+1/2)

terms). The BASEX.exe program by Karpichev also uses these MATLAB-generated basis sets and has the same prob-
lem, producing intensities off by a factor of

√
𝜋/2 and applying regularization with a strength off by a square of that

factor.

We use the correct expressions for all calculations.
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Computations

The above expressions for 𝜌𝑘(𝑢) and 𝜒𝑘(𝑢) involve very small (𝑒−𝑢2 ) and very large (𝑢2𝑘2 ) numbers and thus will
cause floating-point underflow/overflow if computed directly. However, they can be recast as

𝜌𝑘(𝑢) = exp
[︀(︀
1− ln 𝑘2

)︀
𝑘2 + ln𝑢 · 2𝑘2 − 𝑢2

]︀
,

𝜒𝑘(𝑢) = 𝜎

𝑘2∑︁
𝑙=0

exp
[︁ (︀

1− ln 𝑘2
)︀
𝑘2 − 𝑢2 +

+ lnΓ(𝑘2 + 1) + lnΓ

(︂
𝑘2 − 𝑙 +

1

2

)︂
−

− ln Γ(𝑙 + 1)− ln Γ(𝑘2 − 𝑙 + 1) +

+ ln𝑢 · 2𝑙
]︁
,

in which all terms are comparable to 𝑘2 and 𝑢2. In particular, ln Γ(𝑧) ∼ (ln 𝑧 − 1)𝑧 and is available directly as
scipy.special.gammaln().

The ln Γ(𝑧) functions are relatively computationally expensive, but as can be seen, computing the projections 𝜒𝑘(𝑢) for
all 𝑘 up to𝐾 requires only the values of ln Γ(𝑛) and∆ lnΓ(𝑛) = lnΓ(𝑛)−ln Γ(𝑛−1/2) for integers𝑛 = 1, . . . ,𝐾2+1.
They are precomputed and cached before the basis generation. This requires 𝑂(𝐾2) extra memory (comparable to
𝑂(𝑁𝐾) for the basis matrices themselves), but saves 𝑂(𝑁𝐾2) evaluations (see below) of these special functions.

The BASEX article mentions that actually “only a few terms contribute to the sum”, but does not give any quantitative
estimations. In order to obtain the practical constraints on the summation index, consider how the exponential terms
change with 𝑙 at fixed 𝑘 and 𝑢:

exp[. . . ] = exp 𝑓𝑘,𝑢 · exp 𝑔𝑘,𝑢(𝑙),

where

𝑓𝑘,𝑢 =
(︀
1− ln 𝑘2

)︀
𝑘2 − 𝑢2 + lnΓ(𝑘2 + 1)

does not depend on 𝑙, and

𝑔𝑘,𝑢(𝑙) = − ln Γ(𝑙 + 1)⏟  ⏞  
≈(ln 𝑙−1)𝑙

−∆ lnΓ(𝑘2 − 𝑙 + 1)⏟  ⏞  
≈ln(𝑘2−𝑙)/2

+ ln𝑢 · 2𝑙 =

= (1 + ln𝑢2 − ln 𝑙)𝑙 + 𝑜(𝑙).

The last expression (𝑔 without sublinear terms) reaches its maximum at 𝑙max = 𝑢2 and behaves near it as

𝑔𝑘,𝑢(𝑙max + 𝛿) = 𝑢2 − 𝛿2

2𝑢2
+ 𝑜(𝛿2).

From the practical perspective, the terms

exp 𝑔𝑘,𝑢(𝑙) < 𝜀FP · exp 𝑔𝑘,𝑢(𝑙max),

where 𝜀FP ∼ 10−16 is the floating-point precision, will be lost in rounding errors and thus do not need to be computed.
This inequality can be transformed into

𝑔𝑘,𝑢(𝑙)− 𝑔𝑘,𝑢(𝑙max) = −
𝛿2

2𝑢2
< ln 𝜀FP,

from which

𝛿 >
√︀
−2 ln 𝜀FP 𝑢 ≈ 8.6𝑢.

That is, the projections 𝜒𝑘(𝑢) can be computed to within the floating-point precision by summing only the terms with
𝑙 ∈ [𝑙max − 𝛿, 𝑙max + 𝛿], where 𝑙max = 𝑢2 and 𝛿 = 9𝑢.

Since max𝑢 = 𝐾, the total time complexity of computing 𝐾 basis projections at 𝑁 points is 𝑂(𝑁𝐾2).
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Intensity correction

The Gaussian-like BASEX basis functions do not sum to unity:

0 1 2 3 4 5 6 7 8 9
u = r/

0.0

0.5

1.0

1.5

k(u
)

k = 0
k = 1
k = 2
k = 3
k = 4
k = 5
k = 6

k

so they cannot describe a flat distribution, and for 𝜎 ̸= 1 these intensity oscillations are visible in the reconstructed
distributions. In addition, the basis projections are sampled only at pixel centers, which does not satisfy the requirements
of the sampling theorem for their adequate representation. In particular, this leads to a reconstructed-intensity bias in
the most useful 𝜎 = 1 case.

Moreover, the 𝑘 = 0 basis function is broader than the 𝑘 > 0 functions, and 𝜌𝑘(𝑟 = 0) = 0 for all 𝑘 > 0, whereas
𝜌𝑘(𝑟 ̸= 0) ̸= 0. In other words, the region near the symmetry axis is treated quite differently from the rest of the image,
which leads to an artifact near 𝑟 = 0 in the reconstructed distributions.

Another problem arises when Tikhonov regularization is applied. Since it includes the norm of the solution in its
minimization criterion, this generally leads to some intensity drop in the reconstructed distributions, especially near
the symmetry axis.

In order to reduce these problems, PyAbel can use an automatic “intensity correction”. It is based on the linearity of
the transform and uses a “calibration” distribution with a known analytical Abel transform.

Specifically, a flat distribution (with a soft edge, to avoid ringing artifacts near the image boundary) and its analytical
Abel transform are generated. Then the BASEX transform with the desired parameters is applied to that Abel transform,
what should reconstruct the initial flat distribution, but actually includes the artifacts described above. The ratio of the
desired flat distribution to this BASEX result is then taken as the intensity correction profile and is applied to the
BASEX transform of the actual data.

Although this correction procedure does not reproduce analytical results for all distributions (except the calibration
distribution itself), it greatly reduces the method artifacts in most cases.
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Vertical transform

(See this discussion about notation and details of the original implementation.)

Besides the horizontal transform that realizes the inverse Abel transform, the BASEX article and the BASEX.exe pro-
gram also apply a vertical transform to the data. It is performed by multiplying the data by B in equation (13) to obtain
the expansion coefficients and then multiplying these coefficients byZ in equation (9) to obtain the reconstructed image.

However, regularization is never applied to the vertical transform (𝑞22 = 0), so when Z has full rank (𝜎 = 1, the
“narrow” basis set in BASEX.exe), the overall vertical transform is

BZ = ZT
(︁
ZZT

)︁−1

Z = I,

that is, an identity transform, having no effect on the final results.

When Z is not of full rank, for example, for the “broad” basis set (𝜎 = 2), the transform is no longer an identity, but
actually has some undesirable properties.

First, it is not strictly translationally invariant (see the plot of the basis functions above) and thus is in fact not applied
by the BASEX.exe program when “Line-by-line reconstruction” is chosen.

Second, far from the edges this transform is close to a convolution with the following functions:

15 10 5 0 5 10 15

0.0

0.2

0.4

0.6 even lines
odd lines

so, in addition to the possibly useful vertical smoothing, it also introduces noticeable ringing artifacts.

Therefore in the PyAbel BASEX implementation we never apply the vertical transform. If the vertical smoothing for
𝜎 > 1 is desirable, it can be achieved by applying a vertical Gaussian blur to the transformed image.

The behavior of the original BASEX.exe program with top–bottom symmetry and the “broad” basis set can be repro-
duced by replacing the line

return rawdata.dot(A)

in abel.basex.basex_core_transform() with the following code:

Mc = (_bs[1])[::-1] # PyAbel and BASEX.exe use different coordinates
V = Mc.dot(inv((Mc.T).dot(Mc))).dot(Mc.T)
return V.dot(rawdata).dot(A)

and using the code example from BASEX/How to use it with a additional sigma=2 parameter in transform_options.
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4.3 Daun

4.3.1 Introduction

This suite of methods is based on the deconvolution procedure with Tikhonov regularization described by Daun at al.1
and extends it with additional, smoother, approximations and regularization types.

4.3.2 How it works

The original method formulates the numerical Abel transform in a form equivalent to the “onion peeling” method,
where the original distribution is approximated with a step function (piecewise constant function with 1-pixel-wide
radial intervals). The forward transform thus can be described by a system on linear equations in a matrix form

AOPx = b, (4.1)

where the vector x consists of the original distribution values sampled at a uniform radial grid 𝑟𝑖 = 𝑖∆𝑟, the vector b
consists of the projection values sampled at the corresponding uniform grid 𝑦𝑖 = 𝑖∆𝑟, and the matrix AOP corresponds
to the “onion peeling” forward Abel transform. Its elements are

𝐴OP,𝑖𝑗 =

⎧⎪⎪⎨⎪⎪⎩
0, 𝑗 < 𝑖,

2∆𝑟
[︀
(𝑗 + 1/2)2 − 𝑖2

]︀1/2
, 𝑗 = 𝑖,

2∆𝑟
(︁[︀

(𝑗 + 1/2)2 − 𝑖2
]︀1/2 − [︀

(𝑗 − 1/2)2 − 𝑖2
]︀1/2)︁

, 𝑗 > 𝑖

and represent contributions of each distribution interval to each projection interval.

However, instead of performing the inverse transform by using the inverse matrix directly:

x = A−1
OP b,

as it is done in the onion peeling method, the equation (4.1) is solved by applying Tikhonov regularization:

x̃ = argminx
(︀
‖AOPx− b‖2 + 𝛼‖Lx‖2

)︀
, (4.2)

where 𝛼 is the regularization parameter, and the finite-difference matrix

L =

⎡⎢⎢⎢⎢⎢⎢⎣
−1 1 0 · · · 0

0 −1 1
. . .

...
...

. . . . . . . . .
...

0 · · · 0 −1 1

⎤⎥⎥⎥⎥⎥⎥⎦
(approximation of the derivative operator) is used as the Tikhonov matrix. The idea is that the admixture of the deriva-
tive norm to the minimization problem leads to a smoother solution. The regularization parameter 𝛼 controls how
much attention is paid to the derivative: when 𝛼 = 0, the exact solution to (4.1) is obtained, even if very noisy; when
𝛼 → ∞, the solution becomes very smooth, even if reproducing the data poorly. A reasonably chosen value of 𝛼 can
result in a significant suppression of high-frequency noise without noticeably affecting the signal.

The minimization problem (4.2) leads again to a linear matrix equation, and the regularized inverse transform is ob-
tained by using the regularized matrix inverse:

x̃ = A−1
TikbTik, 𝐴Tik = (A𝑇A+ 𝛼AL𝑇L), bTik = 𝐴𝑇b. (4.3)

(Note: here x and b are column vectors, but in PyAbel they are row vectors corresponding to image rows, so all the
equations are transposed; moreover, instead of processing row vectors separately, they are transformed as the image
matrix at once.)

1 K. J. Daun, K. A. Thomson, F. Liu, G. J. Smallwood, “Deconvolution of axisymmetric flame properties using Tikhonov regularization”, Appl.
Opt. 45, 4638–4646 (2006).
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4.3.3 PyAbel additions

Basis sets

The step-function approximation used in the original method implies a basis set consisting of rectangular functions

𝑓𝑖(𝑟) =

{︃
1, 𝑟 ∈ [𝑖− 1/2, 𝑖+ 1/2],

0 otherwise.

This approximation can be considered rather coarse, so in addition to these zero-degree piecewise polynomials we also
implement basis sets consisting of piecewise polynomials up to 3rd degree. An example of a test function composed
of broad and narrow Gaussian peaks and its approximations of various degrees is shown below:
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Here the solid black line is the test function, and the dashed black line is its approximation of degree 𝑛, equal to the
sum of the colored basis functions.

degree = 0:
Rectangular functions produce a stepwise approximation. This is the only approach mentioned in the original
article and corresponds to the usual “onion peeling” transform.

degree = 1:
Triangular functions produce a continuous piecewise linear approximation. Besides being continuous (although
not smooth), this also corresponds to how numerical data is usually plotted (with points connected by straight
lines), so such plots would faithfully convey the underlying method assumptions.
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degree = 2:
Piecewise quadratic functions

𝑓𝑖(𝑟) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2[𝑟 − (𝑖− 1)]2, 𝑟 ∈ [𝑖− 1, 𝑖− 1/2],

1− 2[𝑟 − 𝑖]2, 𝑟 ∈ [𝑖− 1/2, 𝑖+ 1/2],

2[𝑟 − (𝑖+ 1)]2, 𝑟 ∈ [𝑖+ 1/2, 𝑖+ 1],

0 otherwise.

produce a smooth piecewise quadratic approximation. While resembling BASEX basis functions in shape, these
are localized within ±1 pixel, sum to unity (although produce oscillations on slopes), and their projections are
much faster to compute.

degree = 3:
Combinations of cubic Hermite basis functions produce a cubic-spline approximation (with endpoint derivatives
clamped to zero for 2D smoothness). Offers the most accurate representation for sufficiently smooth distributions,
but produces ringing artifacts around sharp features, which can result in negative interpolated intensities even
for non-negative data points.

(The projections of all these basis functions are calculated as described in Polynomials.)

In practice, however, the choice of the basis set has negligible effect on the transform results, as can be seen from an
example below. Nevertheless, cubic splines might be useful for transforming smooth functions, in which case they
yield very accurate results.

Regularization methods

𝐿2 norm

In addition to the original derivative (difference) Tikhonov regularization, PyAbel also implements the usual 𝐿2 reg-
ularization, as in BASEX, with the identity matrix I used instead of L in (4.3). The results are practically identical to
the BASEX method, especially with degree = 2, except that the basis set is computed much faster.

Non-negativity

A more substantial addition is the implementation of the non-negativity regularization. Namely, instead of solving the
unconstrained quadratic problem (4.2), non-negativity constraints are imposed on the original problem:

x̃ = argminx⩾0 ‖Ax− b‖2.

This non-negative least-squares solution yields the distribution without negative intensities that reproduces the input
data as well as possible. In situations where the distribution must be non-negative, this is the best physically meaningful
solution.

The noise-filtering properties of this method come from the fact that noise in the inverse Abel transform is strongly
oscillating, so if negative-going spikes are forbidden in the solution, the positive-going spikes must also be reduced
in order to preserve the overall intensity. Thus the method is most beneficial for very noisy images, for which linear
methods produce a large amount of noise reaching negative values. For clean images of non-negative distributions, the
constrained solution exactly matches the solution of the original problem (4.1). And unlike Tikhonov regularization,
it does not blur legitimate sharp features in any case.

Notice that constrained quadratic minimization remains a non-linear problem. This has several important implications.
First, it is much more computationally challenging, so that transforming a megapixel image takes many seconds instead
of several milliseconds (and depends on the image itself). Second, the average of transformed images is generally not
equal to the transform of the averaged image. It is thus recommended to perform as much averaging (image sym-
metrization and summation of multiple images if applicable) as possible before applying the transform. In particular,
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using symmetry_axis=(0, 1) in abel.transform.Transform would in fact require transforming only one quad-
rant, which is 4 times faster that transforming the whole image. Third, the method is only asymptotically unbiased,
but for sufficiently noisy data can systematically shift or blur the intensities towards the symmetry axis. Thus while
this regularization can be very helpful in revealing the structure in raw images, it is not recommended when further
processing (like model fitting) is involved. In particular, for extraction of velocity and anisotropy distributions from
velocity-map images, the rBasex method, possibly with its “positive” regularization, is more appropriate.

4.3.4 When to use it

This method with default parameters (0th degree, 0 regularization parameter) is identical to the “onion peeling”
method, but can also be used for the forward transform.

The original (derivative/difference) Tikhonov regularization with non-zero regularization parameter helps to remove
high-frequency oscillations from the transformed image. However, an excessively large regularization parameter can
lead to oversmoothing and broadening of the useful signal and under/overshoots around sharp features. As recom-
mended by Daun et al., by systematically adjusting the heuristic regularization parameter, the analyst can find a solution
that represents an acceptable compromise between accuracy and regularity.

The 𝐿2 Tikhonov regularization approach is equivalent to that in the BASEX method and has the same use cases and
[dis]advantages.

The non-negativity regularization is recommended for visual inspection of very noisy images and images with sharp
features without a broad background. However, due to its slowness, it cannot be used for real-time data processing.

4.3.5 How to use it

The inverse Abel transform of a full image can be done with the abel.Transform class:

abel.Transform(myImage, method='daun').transform

For the forward Abel transform, simply add direction='forward':

abel.Transform(myImage, method='daun', direction='forward').transform

Additional parameters can be passed through the transform_options parameter. For example, to use the original
regularization method with the regularization parameter set to 100:

abel.Transform(myImage, method='daun',
transform_options=dict{reg=100}).transform

The 𝐿2 regularization can be applied using

abel.Transform(myImage, method='daun',
transform_options=dict{reg=('L2', 100)}).transform

And the non-negative solution is obtained by

abel.Transform(myImage, method='daun',
transform_options=dict{reg='nonneg'}).transform

In this case, it is recommended to use symmetrization:

abel.Transform(myImage, method='daun',
symmetry_axis=0, # or symmetry_axis=(0, 1) if applicable
transform_options=dict{reg='nonneg'}).transform
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unless independent inspection of all image parts is desired.

The algorithm can be also accessed directly (to transform a right-side half-image or properly oriented quadrants)
through the abel.daun.daun_transform() function.

4.3.6 Examples

Performance of various regularization methods for the Dribinski sample image with added Poissonian noise:

reg=None reg=('diff', 100) reg=('L2c', 50) reg='nonneg'

None
('diff', 100)
('L2c', 50)
'nonneg'

0 20 40 60 80 100 120 140 160 180

(source code)

The degree of basis-set polynomials has almost no effect on the results (shown here for reg=0):
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degree=0 degree=1 degree=2 degree=3

0
1
2
3

0 20 40 60 80 100 120 140 160 180

(source code)

4.3.7 Citation

• K. J. Daun, K. A. Thomson, F. Liu, G. J. Smallwood, “Deconvolution of axisymmetric flame properties using
Tikhonov regularization”, Appl. Opt. 45, 4638–4646 (2006).

Note: If you use any non-default options (degree, regularization), please cite not only the article by Daun et al. and
the PyAbel article, but also this PyAbel release (DOI: 10.5281/zenodo.7438595), because these capabilities are not
present in the original work by Daun et al. and were added to PyAbel after the RSI publication.

4.4 Direct

4.4.1 Introduction

This method attempts a direct integration of the Abel transform integral. It makes no assumptions about the data (apart
from cylindrical symmetry), but it typically requires fine sampling to converge. Such methods are typically inefficient,
but thanks to this Cython implementation (by Roman Yurchuk), this ‘direct’ method is competitive with the other
methods.
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4.4.2 How it works

Information about the algorithm and the numerical optimizations is contained in PR #52

4.4.3 When to use it

When a robust forward transform is required, this method works quite well. It is not typically recommended for the
inverse transform, but it can work well for smooth functions that are finely sampled.

4.4.4 How to use it

To complete the forward or inverse transform of a full image with the direct method, simply use the abel.Transform
class:

abel.Transform(myImage, method='direct', direction='forward').transform
abel.Transform(myImage, method='direct', direction='inverse').transform

If you would like to access the Direct algorithm directly (to transform a right-side half-image), you can use abel.
direct.direct_transform().

4.5 Hansen–Law

4.5.1 Introduction

The Hansen and Law transform12 is a fast (linear time) Abel transform.

In their words, Hansen and LawPage 122, 1 present:

“. . . new family of algorithms, principally for Abel inversion, that are recursive and hence computationally efficient.
The methods are based on a linear, space-variant, state-variable model of the Abel transform. The model is the basis
for deterministic algorithms.”

and2:

“. . . Abel transform, which maps an axisymmetric two-dimensional function into a line integral projection.”

The algorithm is efficient, one of the few methods to provide both the forward Abel and inverse Abel transform.

4.5.2 How it works

For an axis-symmetric source image the projection of a source image, 𝑔(𝑅), is given by the forward Abel transform:

𝑔(𝑅) = 2

∫︁ ∞

𝑅

𝑓(𝑟)𝑟√
𝑟2 −𝑅2

𝑑𝑟

The corresponding inverse Abel transform is

𝑓(𝑟) = − 1

𝜋

∫︁ ∞

𝑟

𝑔′(𝑅)√
𝑅2 − 𝑟2

𝑑𝑅

1 E. W. Hansen, P.-L. Law, “Recursive methods for computing the Abel transform and its inverse”, J. Opt. Soc. Am. A 2, 510–520 (1985).
2 E. W. Hansen, “Fast Hankel transform algorithm”, IEEE Trans. Acoust. Speech Signal Proc. 33, 666–671 (1985)
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Fig. 4.9: Projection geometry (Fig. 11)
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The Hansen and Law method makes a coordinate transformation to model the Abel transform as a set of linear dif-
ferential equation, with the driving function either the source image 𝑓(𝑟), for the forward transform, or the projection
image gradient 𝑔′(𝑅), for the inverse transform. More detail is given below.

Forward transform is

𝑥𝑛−1 = Φ𝑛𝑥𝑛 +𝐵0𝑛𝑓𝑛 +𝐵1𝑛𝑓𝑛−1

𝑔𝑛 = 𝐶𝑥𝑛,

where 𝐵1𝑛 = 0 for the zero-order hold approximation.

Inverse transform:

𝑥𝑛−1 = Φ𝑛𝑥𝑛 +𝐵0𝑛𝑔
′
𝑛 +𝐵1𝑛𝑔

′
𝑛−1

𝑓𝑛 = 𝐶𝑥𝑛

Note the only difference between the forward and inverse algorithms is the exchange of 𝑓𝑛 with 𝑔′𝑛 (or 𝑔𝑛).

Details on the evaluation of Φ, 𝐵0𝑛, and 𝐵1𝑛 are given below.

The algorithm iterates along each individual row of the image, starting at the out edge, ending at the center-line. Since
all rows in an image can be processed simultaneously, the operation can be easily vectorized and is therefore numerically
efficient.
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4.5.3 When to use it

The Hansen-Law algorithm offers one of the fastest, most robust methods for both the forward and inverse transforms.
It requires reasonably fine sampling of the data to provide exact agreement with the analytical result, but otherwise this
method is a hidden gem of the field.

4.5.4 How to use it

To complete the forward or inverse transform of a full image with the hansenlaw method, simply use the abel.
Transform class:

abel.Transform(myImage, method='hansenlaw', direction='forward').transform
abel.Transform(myImage, method='hansenlaw', direction='inverse').transform

If you would like to access the Hansen-Law algorithm directly (to transform a right-side half-image), you can use
abel.hansenlaw.hansenlaw_transform().

4.5.5 Tips

hansenlaw tends to perform better with images of large size 𝑛 > 1001 pixel width. For smaller images the angular_
integration (speed) profile may look better if sub-pixel sampling is used:

angular_integration_options=dict(dr=0.5)

4.5.6 Example

0 200 400 600 800 1000
x (pixels)

0

200

400

600

800

1000

y 
(p

ixe
ls)

VMI, inverse Abel: 1024x1023

0 50 100 150 200 250 300 350 400 450
radial pixel

0.0

0.2

0.4

0.6

0.8

1.0

1.2

in
te

ns
ity

speed distribution

3 2 1 0 1 2 3
angle  (radians)

2

0

2

4

6

8

10

12

in
te

ns
ity

= -0.93+-0.01

anisotropy parameter
expt. data r=[370:390]
fit

0

50

100

150

200

250

300

350

400

Source code
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4.5.7 Historical Note

The Hansen and Law algorithm was almost lost to the scientific community. It was rediscovered by Jason Gascooke
(Flinders University, South Australia) for use in his velocity-map image analysis, and written up in his PhD thesis3.

Eric Hansen provided guidance, algebra, and explanations, to aid the implementation of his first-order hold algorithm,
described in Ref.Page 122, 2 (April 2018).

4.5.8 The Math

The resulting state equations are, for the forward transform:

𝑥′(𝑟) = −1

𝑟
𝐴𝑥(𝑟) +

1

𝜋𝑟
�̃�𝑓(𝑅),

with inverse:

𝑥′(𝑅) = − 1

𝑅
𝐴𝑥(𝑅)− 2�̃�𝑓(𝑅),

where [𝐴, �̃�, 𝐶] realize the impulse response: ℎ̃(𝑡) = 𝐶 exp (𝐴𝑡)�̃� =
[︀
1− 𝑒−2𝑡

]︀− 1
2 , with

𝐴 = diag[𝜆1, 𝜆2, ..., 𝜆K]

�̃� = [ℎ1, ℎ2, ..., ℎ𝐾 ]𝑇

𝐶 = [1, 1, ..., 1]

The differential equations have the transform solutions, forward:

𝑥(𝑟) = Φ(𝑟, 𝑟0)𝑥(𝑟0) + 2

∫︁ 𝑟

𝑟0

Φ(𝑟, 𝜖)�̃�𝑓(𝜖)𝑑𝜖.

and inverse:

𝑥(𝑟) = Φ(𝑟, 𝑟0)𝑥(𝑟0)−
1

𝜋

∫︁ 𝑟

𝑟0

Φ(𝑟, 𝜖)

𝑟
�̃�𝑔′(𝜖)𝑑𝜖,

with Φ(𝑟, 𝑟0) = diag[( r0r )
𝜆1 , ..., ( r0r )

𝜆K ] ≡ diag[( n
n−1 )

𝜆1 , ..., ( n
n−1 )

𝜆K ], where the integration limits (𝑟, 𝑟0) extend
across one grid interval or a pixel, so 𝑟0 = 𝑛∆, 𝑟 = (𝑛− 1)∆.

To evaluate the (superposition) integral, the driven part of the solution, the driving function 𝑓(𝜖) or 𝑔′(𝜖) is assumed to
either be constant across each grid interval, the zero-order hold approximation, 𝑓(𝜖) ∼ 𝑓(𝑟0), or linear, a first-order
hold approximation, 𝑓(𝜖) ∼ 𝑝+ 𝑞𝜖 = (𝑟0𝑓(𝑟)− 𝑟𝑓(𝑟0))/∆+ (𝑓(𝑟0)− 𝑓(𝑟))𝜖/∆. The integrand then separates into
a sum over terms multiplied by ℎ𝑘,

3 J. R. Gascooke, PhD Thesis: “Energy Transfer in Polyatomic-Rare Gas Collisions and Van Der Waals Molecule Dissociation”, Flinders Uni-
versity (2000), (record, PDF).
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∑︁
𝑘

ℎ𝑘𝑓(𝑟0)

∫︁ 𝑟

𝑟0

Φ𝑘(𝑟, 𝜖)𝑑𝜖

with each integral

∫︁ 𝑟

𝑟0

(︁ 𝜖

𝑟

)︁𝜆

𝑘
𝑑𝜖 =

𝑟

𝑟0

[︃
1−

(︂
𝑟

𝑟0

)︂𝜆𝑘+1
]︃
=

(𝑛− 1)𝑎

𝜆𝑘 + 𝑎

[︃
1−

(︂
𝑛

𝑛− 1

)︂𝜆𝑘+𝑎
]︃
,

where, the right-most-side of the equation has an additional parameter, 𝑎 to generalize the power of 𝜆𝑘. For the inverse
transform, there is an additional factor 1

𝜋𝑟 in the state equation, and hence the integrand has 𝜆𝑘 power, reduced by −1.
While, for the first-order hold approximation, the linear 𝜖 term increases 𝜆𝑘 by +1.

4.5.9 Citation

• E. W. Hansen, P.-L. Law, “Recursive methods for computing the Abel transform and its inverse”, J. Opt. Soc.
Am. A 2, 510–520 (1985).

• E. W. Hansen, “Fast Hankel transform algorithm”, IEEE Trans. Acoust. Speech Signal Proc. 33, 666–671 (1985)

• J. R. Gascooke, PhD Thesis: “Energy Transfer in Polyatomic-Rare Gas Collisions and Van Der Waals Molecule
Dissociation”, Flinders University (2000), (record, PDF).

4.6 Lin-Basex

4.6.1 Introduction

Inversion procedure based on 1-dimensional projections of VM-images as described in Gerber et al.1.

[ from the abstract ]

VM-images are composed of projected Newton spheres with a common centre. The 2D images are usually evaluated
by a decomposition into base vectors each representing the 2D projection of a set of particles starting from a centre
with a specific velocity distribution. We propose to evaluate 1D projections of VM-images in terms of 1D projections
of spherical functions, instead. The proposed evaluation algorithm shows that all distribution information can be
retrieved from an adequately chosen set of 1D projections, alleviating the numerical effort for the interpretation of
VM-images considerably. The obtained results produce directly the coefficients of the involved spherical functions,
making the reconstruction of sliced Newton spheres obsolete.

1 Th. Gerber, Yu. Liu, G. Knopp, P. Hemberger, A. Bodi, P. Radi, Ya. Sych, “Charged particle velocity map image reconstruction with one-
dimensional projections of spherical functions”, Rev. Sci. Instrum. 84, 033101 (2013).
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4.6.2 How it works

A projection of 3D Newton spheres onto the detector plane followed by a projection of the resulting 2D image along
the 𝑥 axis

z′  
rk   

x

 z
z′′  

 
L(z)

z  

yields a compact 1D function:

𝐿(𝑧, 𝑢) =
∑︁
𝑘

∑︁
ℓ

𝑃ℓ(𝑢)𝑃ℓ

(︂
𝑧

𝑟𝑘

)︂ ∏︀
𝑟𝑘
(𝑧)

2𝑟𝑘
𝑝ℓ𝑘

with 𝑢 = cos 𝜃. This function constitutes a system of equations expressing 𝐿(𝑧, 𝑢) as a linear combination of Legendre
polynomials 𝑃ℓ(𝑧/𝑟𝑘). There exists for a given base a unique set of coefficients 𝑝ℓ𝑘 producing a least-squares fit to the
function 𝐿(𝑧, 𝑢).

[ extract of a comment made by Thomas Gerber (method author) ]

Imaging an PES experiment which produces electrons that are distributed on the surface of a sphere. This sphere can
be described by spherical functions. If all electrons have the same energy we expect them on a (Newton) sphere with
radius 𝑖. This radius is projected to the CCD. The distribution on the CCD has (if optics are approriate) the same radius
𝑖. Now let us assume that the distribution on the Newton sphere has some anisotropy. We can describe the distribution
on this sphere by spherical functions 𝑌𝑛𝑚. Let’s say 𝑥𝑌00 + 𝑦𝑌20. The 1D projection of those spheres produces just
𝑥𝑃𝑖0(𝑘) + 𝑦𝑃𝑖2(𝑘) where 𝑃𝑖 denotes Legendre Polynomials scaled to the interval 𝑖 and 𝑘 is the argument (pixel).

For one projection Lin-Basex now solves for the parameters 𝑥 and 𝑦. If we look at another projection turned by an
angle, the Basis 𝑃𝑖0 and 𝑃𝑖2 has to be modified because the projection of e.g., 𝑌20 turned by an angle yields another
function. It was shown that this function for e.g., 𝑃2 is just 𝑃2(𝑎)𝑃𝑖2(𝑘) where 𝑎 is the turning angle. Solving the
equations for the 1D projection at angle (𝑎) with this modified basis yields the same 𝑥 and 𝑦 parameters as before.

Lin-Basex aims at the determination of contributions in terms of spherical functions calculating the weight of each 𝑌𝑙0.
If we reconstruct the 3D object by adding all the 𝑌𝑙0 contributions we get the inverse Laplace transform of the image
on the CCD from which we can derive “Slices”.
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4.6.3 When to use it

[ another extract from comments by the method author Thomas Gerber ]

The advantage of linbasex is, that not so many projections are needed (typically len(an) ~ len(pol)()). So,
linbasex evaluation using a mathematically appropriate and correct basis set should eventually be much faster than
basex.

If our 3D object is “sparse” (i.e., contains a sparse set of Newton spheres) a sparse basis may be used. In this case
one must have primary information about what “sparsity” is appropriate.

That means that an Abel transform may be simplified if primary information about the object is available. That is not
the case with the other methods.

Absolute noise increases in each sphere with sqrt(counts) but relative noise decreases with 1/
√

counts.

4.6.4 How to use it

To complete the inverse Abel transform of a full image with the linbasex method, simply use the abel.Transform
class:

abel.Transform(myImage, method='linbasex').transform

Note, the parameter transform_options=dict(return_Beta=True), provides additional attributes, direct from
the transform procedure:

• .Beta[0] - the speed distribution

• .Beta[1] - the anisotropy parameter vs radius

• .radial - the radial array

• .projection - the radial projections at angles an.

A more complete global call, that centers the image, ensures that the size is odd, and returns the attributes above, would
be e.g.

abel.Transform(myImage, method='linbasex', center='convolution',
transform_options=dict(return_Beta=True))

Alternatively, the linbasex algorithm abel.linbasex.linbasex_transform_full() directly transforms the full
image, with the attributes returned as a tuple in this case.

4.6.5 Tips

Including more projection angles may improve the transform:

an = [0, 45, 90, 135]

or

an = arange(0, 180, 10)
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4.6.6 Example
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Source code

4.6.7 Historical

PyAbel python code was extracted from this jupyter notebook supplied by Thomas Gerber.

4.6.8 Citation

• Th. Gerber, Yu. Liu, G. Knopp, P. Hemberger, A. Bodi, P. Radi, Ya. Sych, “Charged particle velocity map image
reconstruction with one-dimensional projections of spherical functions”, Rev. Sci. Instrum. 84, 033101 (2013).

4.7 Onion Peeling (Bordas)

4.7.1 Introduction

The onion peeling method, also known as “back projection” has been ported to Python from the original Matlab imple-
mentation, created by Chris Rallis and Eric Wells of Augustana University, and described in1. The algorithm actually
originates from Bordas et al.2.

See the discussion in issue #56.
1 C. E. Rallis, T. G. Burwitz, P. R. Andrews, M. Zohrabi, R. Averin, S. De, B. Bergues, B. Jochim, A. V. Voznyuk, N. Gregerson, B. Gaire,

I. Znakovskaya, J. McKenna, K. D. Carnes, M. F. Kling, I. Ben-Itzhak, E. Wells, “Incorporating real time velocity map image reconstruction into
closed-loop coherent control”, Rev. Sci. Instrum. 85, 113105 (2014).

2 C. Bordas, F. Paulig, “Photoelectron imaging spectrometry: Principle and inversion method”, Rev. Sci. Instrum. 67, 2257–2268 (1996).

4.7. Onion Peeling (Bordas) 129

https://www.psi.ch/sites/default/files/import/sls/vuv/Station1_IntroEN/Lin_Basex0.7.zip
https://doi.org/10.1063/1.4793404
https://github.com/PyAbel/PyAbel/issues/56
https://doi.org/10.1063/1.4899267
https://doi.org/10.1063/1.1147044


PyAbel Documentation, Release 0.9.0

4.7.2 How it works

This algorithm calculates the contributions of particles, at a given kinetic energy, to the signal in a given pixel (in a
row). This signal is then subtracted from the projected (experimental) pixel and also added to the back-projected image
pixel. The procedure is repeated until the center of the image is reached. The whole procedure is done for each pixel
row of the image.

4.7.3 When to use it

This is a historical implementation of the onion-peeling method.

4.7.4 How to use it

To complete the inverse transform of a full image with the onion_bordas method, simply use the abel.Transform
class:

abel.Transform(myImage, method='onion_bordas').transform

If you would like to access the onion-peeling algorithm directly (to transform a right-side half-image), you can use
abel.onion_bordas.onion_bordas_transform().
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4.7.5 Example
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Source code

4.7.6 Citation

• C. E. Rallis, T. G. Burwitz, P. R. Andrews, M. Zohrabi, R. Averin, S. De, B. Bergues, B. Jochim, A. V. Voznyuk,
N. Gregerson, B. Gaire, I. Znakovskaya, J. McKenna, K. D. Carnes, M. F. Kling, I. Ben-Itzhak, E. Wells, “In-
corporating real time velocity map image reconstruction into closed-loop coherent control”, Rev. Sci. Instrum.
85, 113105 (2014).

• C. Bordas, F. Paulig, “Photoelectron imaging spectrometry: Principle and inversion method”, Rev. Sci. Instrum.
67, 2257–2268 (1996).
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4.8 Onion Peeling (Dasch)

4.8.1 Introduction

The “Dasch onion peeling” deconvolution algorithm is one of several described in the Dasch paper1. See also the
“two-point” and “three-point” descriptions.

4.8.2 How it works

In the onion-peeling method the projection is approximated by rings of constant property between 𝑟𝑗 − ∆𝑟/2 and
𝑟𝑗 +∆𝑟/2 for each data point 𝑟𝑗 .

The projection data is given by 𝑃 (𝑟𝑖) = ∆𝑟
∑︀∞

𝑗=𝑖 𝑊𝑖𝑗𝐹 (𝑟𝑗), where

𝑊𝑖𝑗 =

⎧⎪⎨⎪⎩
0, 𝑗 < 𝑖,√︀

(2𝑗 + 1)2 − 4𝑖2, 𝑗 = 𝑖,√︀
(2𝑗 + 1)2 − 4𝑖2 −

√︀
(2𝑗 − 1)2 − 4𝑖2, 𝑗 > 𝑖.

The onion-peeling deconvolution function is 𝐷𝑖𝑗 = (𝑊−1)𝑖𝑗 .

4.8.3 When to use it

This method is simple and computationally very efficient. The article states that it has less smoothing that other methods
(discussed in Dasch).

4.8.4 How to use it

To complete the inverse transform of a full image with the onion_dasch method, simply use the abel.Transform
class:

abel.Transform(myImage, method='onion_peeling').transform

If you would like to access the onion_peeling algorithm directly (to transform a right-side half-image), you can use
abel.dasch.onion_peeling_transform().

4.8.5 Example

# -*- coding: utf-8 -*-
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

"""example_dasch_methods.py.
"""

import numpy as np
(continues on next page)

1 C. J. Dasch, “One-dimensional tomography: a comparison of Abel, onion-peeling, and filtered backprojection methods”, Appl. Opt. 31,
1146–1152 (1992).
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(continued from previous page)

import abel
import matplotlib.pyplot as plt

# Dribinski sample image size 501x501
n = 501
IM = abel.tools.analytical.SampleImage(n).func

# split into quadrants
origQ = abel.tools.symmetry.get_image_quadrants(IM)

# speed distribution of original image
orig_speed = abel.tools.vmi.angular_integration_3D(origQ[0], origin=(-1, 0))
scale_factor = orig_speed[1].max()

plt.plot(orig_speed[0], orig_speed[1]/scale_factor, linestyle='dashed',
label="Dribinski sample")

# forward Abel projection
fIM = abel.Transform(IM, direction="forward", method="hansenlaw").transform

# split projected image into quadrants
Q = abel.tools.symmetry.get_image_quadrants(fIM)

dasch_transform = {
"two_point": abel.dasch.two_point_transform,
"three_point": abel.dasch.three_point_transform,
"onion_peeling": abel.dasch.onion_peeling_transform

}

for method in dasch_transform.keys():
Q0 = Q[0].copy()

# method inverse Abel transform
AQ0 = dasch_transform[method](Q0)

# speed distribution
speed = abel.tools.vmi.angular_integration_3D(AQ0, origin=(-1, 0))

plt.plot(speed[0], speed[1]*orig_speed[1][14]/speed[1][14]/scale_factor,
label=method)

plt.title("Dasch methods for Dribinski sample image $n={:d}$".format(n))
plt.xlim((0, 250))
plt.legend(loc='upper center', bbox_to_anchor=(0.35, 1), frameon=False)
plt.tight_layout()
# plt.savefig("plot_example_dasch_methods.png",dpi=100)
plt.show()
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For more information on the PyAbel implementation of the onion_peeling algorithm, please see PR #155.

4.8.6 Citation

• C. J. Dasch, “One-dimensional tomography: a comparison of Abel, onion-peeling, and filtered backprojection
methods”, Appl. Opt. 31, 1146–1152 (1992).

4.9 rBasex

4.9.1 Introduction

This method resembles the pBasex1 approach of expanding a velocity-map image over a 2D basis set in polar coordi-
nates, but uses more convenient basis functions with analytical Abel transforms, developed by M. Ryazanov2.

1 G. A. Garcia, L. Nahon, I. Powis, “Two-dimensional charged particle image inversion using a polar basis function expansion”, Rev. Sci. Instrum.
75, 4989–4996 (2004).

2 M. Ryazanov, “Development and implementation of methods for sliced velocity map imaging. Studies of overtone-induced dissociation and
isomerization dynamics of hydroxymethyl radical (CH2OH and CD2OH)”, Ph.D. dissertation, University of Southern California, 2012. (ProQuest,
USC).
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4.9.2 How it works

In velocity-map imaging (VMI) with cylindrically symmetric photodissociation (in a broad sense, including photoion-
ization and photodetachment) the 3D velocity distribution at each speed (3D radius) consists of a finite number of
spherical harmonics 𝑌𝑛𝑚(𝜃, 𝜙) with 𝑚 = 0, which are also representable as Legendre polynomials 𝑃𝑛(cos 𝜃). This
means that an 𝑁 ×𝑁 image has only 𝑁𝑟 ×𝑁𝑎 degrees of freedom, where 𝑁𝑟 is the number of radial samples, usually
𝑁/2, and 𝑁𝑎 is the number of angular terms, a small number depending on the studied process. These degrees of
freedom correspond to the “radial distribution” extracted from the transformed image in other, general Abel-inversion
methods.

However, if these radial distributions are considered as a basis, the 3D distribution can be represented as a linear
combination of these basis functions with some coefficients. And the corresponding image, being the forward Abel
transform of the 3D distribution, will be represented as a linear combination of basis-function projections, that is, their
forward Abel transforms, with the same coefficients. The reverse is also true: finding the expansion coefficients of
an experimental velocity-map image over the projected basis directly gives the expansion coefficients of the initial 3D
velocity direction and thus the sought radial distributions.

Finding the expansion coefficients is a simple linear problem, and the forward Abel transforms of the basis functions
can be calculated easily if the basis is chosen wisely.

See rBasex: mathematical details for the complete description.

Differences from pBasex

While rBasex is similar to pBasex in the idea of using VMI-oriented 3D basis functions, it has several key differences:

1. Triangular radial basis functions are used instead of Gaussians. They are more compact/orthogonal (only the
adjacent functions overlap) and have analytical Abel transforms.

2. Cosine powers are used instead of Legendre polynomials for angular basis functions. This makes the projected
basis functions also separable into radial and angular parts.

3. The basis separability allows decomposition of the problem in two steps: first, radial distributions are extracted
from the image (without intermediate rebinning to polar grid, thus faster and avoiding accumulation of resampling
errors); second, these radial distributions are expanded over radial bases for each angular order. This eliminates
the necessity to work with large matrices.

4. Custom pixel weighting can be used, for example, to exclude image areas “damaged” in some way (obscured by
a beam block, contaminated by parasitic signals, affected by detector imperfections and so on). Partial images
(not including the whole angular range) can be reconstructed as well.

5. The forward Abel transform is implemented in addition to the inverse transform.

6. Additional (better) regularization methods are implemented.

Differences from the reconstruction method described inPage 134, 2

Many ideas used in rBasex, including the analytically transformable basis functions, are taken from the previous
workPage 134, 2, but with some omissions, additions and modifications.

1. Instead of working with individual pixels and weighting them according to Poisson statistics, the binned radial
distributions (not weighted by default) are transformed. This is less accurate, but much faster, especially in
Python.

2. Slicing is not implemented.

3. Only the non-negativity constraints are implemented. However, several linear regularization options are added.

4. Odd angular orders can be included.
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4.9.3 When to use it

This method makes additional assumptions (beyond cylindrical symmetry) about the data, so it can be applied only to
velocity-map images or in other similar situations involving a finite number of spherical harmonics. However, in this
special case, it offers several benefits:

1. The reconstructed radial distributions, which are often the primary interest in VMI studies, are obtained directly.

2. Limitations on the angular behavior of the distribution also put strong constraints on the reconstruction noise,
making the reconstructed images much cleaner.

3. Several optional regularization methods help to further reduce noise in reconstructed images, especially near
the center. Regularization strengths can be adjusted to produce a desirable balance between noise reduction and
blurring of sharp features.

4. Unlike general Abel-transform methods, which have time complexity with cubic dependence on the image size,
this method is only quadratic, once the transform matrix is computed. Computing the transform matrix is still
cubic, but after it is done, transforming a series of images is faster, especially for large images.

5. The optional non-negativity constraints implemented in this method allow obtaining physically meaningful in-
tensity and anisotropy distributions. They can also help in denoising experimental images with very low event
counts.

4.9.4 How to use it

The method can be accessed through the universal abel.Transform class:

res = abel.Transform(image, method='rbasex')
recon = res.transform
distr = res.distr

optionally using other Transform arguments and passing additional rBasex parameters (see abel.rbasex.rbasex_
transform() documentation for their full description) through the transform_options argument. Alternatively, it
might be more convenient to use the method by calling its transform function directly:

recon, distr = abel.rbasex.rbasex_transform(image)
r, I, beta = distr.rIbeta()

It returns the transformed image recon and a Distributions.Results object distr, from which various radial
distributions can be retrieved, such as the intensity and anisotropy-parameter distributions in this example.

If only the distributions are needed, but not the transformed image itself, the calculations can be accelerated by disabling
the creation of the output image:

_, distr = abel.rbasex.rbasex_transform(image, out=None)
r, I, beta = distr.rIbeta()

Note that rBasex does not require the input image to be centered. Thus instead of centering it with center_image()
(or using the origin argument of Transform), which will crop some data or fill it with zeros, it is better to pass the
image origin directly to the transform function, determining it automatically, if needed:

origin = abel.tools.center.find_origin(image, method='convolution')
recon, distr = abel.rbasex.rbasex_transform(image, origin=origin)

This also must be done if optional pixel weighting is used, since otherwise the centered image would become incon-
sistent with the weights array. For example, when using the Transform class, pass the origin as follows:
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res = abel.Transform(image, method='rbasex',
transform_options=dict(origin=..., weights=...))

The weights array can also be used as a mask, using zero weights to exclude unwanted pixels, as demonstrated in Ex-
ample: rBasex beam block. In practice, instead of defining the mask geometry in the code, it might be more convenient
to save the analyzed data as an image file:

# save as an RGB image using a chosen colormap
plt.imsave('imagemask.png', image, cmap='hot')

then open it in any raster graphics editor, paint the areas to be excluded with some distinct color (for example, blue
in case of cmap='hot') and save it. This painted image then can be loaded in the program, and the mask is easily
extracted from it:

# read as an array with R, G, B (or R, G, B, A) components
mask = plt.imread('imagemask.png')
# set zero weights for pixels with blue channel (2) > red channel (0)
# and unit weights for other pixels
weights = 1.0 - (mask[..., 2] > mask[..., 0])

(for other image colormaps and mask colors, adapt the comparison logic accordingly). These weights then can be used
in the transform of the original data, as well as any other data having the same mask geometry.

4.9.5 Citation

This method has not yet been published elsewhere, so please cite it as the “rBasex method from the PyAbel package”,
using the current Zenodo DOI: 10.5281/zenodo.7438595.

• G. A. Garcia, L. Nahon, I. Powis, “Two-dimensional charged particle image inversion using a polar basis function
expansion”, Rev. Sci. Instrum. 75, 4989–4996 (2004).

• M. Ryazanov, “Development and implementation of methods for sliced velocity map imaging. Studies of
overtone-induced dissociation and isomerization dynamics of hydroxymethyl radical (CH2OH and CD2OH)”,
Ph.D. dissertation, University of Southern California, 2012. (ProQuest, USC).

rBasex: mathematical details

Coordinates

The coordinate systems used here are defined such that the image is in the 𝑥𝑦 plane, with the 𝑦 axis being the (vertical)
axis of symmetry. Thus the image-space polar coordinates are

𝑟 =
√︀
𝑥2 + 𝑦2,

𝜃 = arctan
𝑦

𝑥
,

with the polar angle 𝜃 measured from the 𝑦 axis. The corresponding coordinate system for the underlying 3D distribu-
tion has the same 𝑥 and 𝑦 axes, plus a perpendicular 𝑧 axis, so the distribution-space spherical coordinates are

𝜌 =
√︀
𝑥2 + 𝑦2 + 𝑧2,

𝜃′ = arctan
𝑦√

𝑥2 + 𝑧2
,

𝜑′ = arctan
𝑧

𝑥
,
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with the polar angle 𝜃 also measured from the 𝑦 axis (the symmetry axis). The Abel transform performs a projection
along the 𝑧 axis:

(𝑥, 𝑦, 𝑧) ↦→ (𝑥, 𝑦),

as shown by the dashed line:

x

y

z

′

′

r

This figure also illustrates important relations between the 3D and 2D radii:

𝜌 =
√︀
𝑟2 + 𝑧2

and polar angles:

cos 𝜃 = 𝑦/𝑟

cos 𝜃′ = 𝑦/𝜌

}︃
⇒ cos 𝜃′ =

𝑟

𝜌
cos 𝜃.

Basis functions

The 3D distribution basis consists of direct products of radial and angular basis functions. The radial functions are
triangular functions centered at integer radii (whole pixels), spanning ±1 pixel:

0 R 1 R R + 1
0

1

138 Chapter 4. Transform Methods



PyAbel Documentation, Release 0.9.0

𝑏𝑅(𝜌) =

⎧⎪⎨⎪⎩
𝜌− (𝑅− 1), 𝑅− 1 < 𝜌 < 𝑅,

(𝑅+ 1)− 𝜌, 𝑅 ⩽ 𝜌 < 𝑅+ 1,

0 otherwise

(and 𝑏0(𝜌) does not have the inner part, 𝑅 − 1 < 𝜌 < 𝑅, since 𝜌 ⩾ 0). These functions form a basis of continuous
piecewise linear approximations with nodes at each pixel. In other words, linear combinations of these functions
represent any radial distribution as pixel values connected by straight lines.

The angular basis functions are just integer powers of cos 𝜃′ from 0 up to the highest order expected in the distribution.
Hence the overall 3D distribution basis functions are

𝑏𝑅,𝑛(𝜌, 𝜃
′, 𝜙′) = 𝑏𝑅(𝜌) cos

𝑛 𝜃′

(due to cylindrical symmetry, there is no dependence on the azimuthal angle 𝜙′).

The 2D image basis functions are, correspondingly, the projections of these distribution basis functions along the 𝑧
axis:

𝑝𝑅,𝑛(𝑟, 𝜃) =

∫︁ ∞

−∞
𝑏𝑅,𝑛(𝜌, 𝜃

′, 𝜙′) 𝑑𝑧 = 2

∫︁ ∞

0

𝑏𝑅,𝑛(𝜌, 𝜃
′, 𝜙′) 𝑑𝑧.

Basis projections

As mentioned earlier, cos 𝜃′ = 𝑟
𝜌 cos 𝜃, so we can write

𝑝𝑅,𝑛(𝑟, 𝜃) = 2

∫︁ ∞

0

𝑏𝑅(𝜌) cos
𝑛 𝜃′ 𝑑𝑧 =

= 2

∫︁ ∞

0

𝑏𝑅(𝜌)

(︂
𝑟

𝜌

)︂𝑛

cos𝑛 𝜃 𝑑𝑧 =

= 2

∫︁ ∞

0

𝑏𝑅(𝜌)

(︂
𝑟

𝜌

)︂𝑛

𝑑𝑧 · cos𝑛 𝜃.

In other words, basis projection are also separable into radial and angular parts:

𝑝𝑅,𝑛(𝑟, 𝜃) = 𝑝𝑟;𝑛(𝑟) cos
𝑛 𝜃,

with the same angular dependence, but their radial parts are different for different angular orders (thus projections of
functions with angular dependence different from a singe cosine power, for example, sin2 𝜃′ or Legendre polynomials,
would be not separable).

Since 𝑏𝑅(𝜌) consists of two segments that are linear functions of 𝜌, the integrals above can be expressed in terms of
the integrals

𝑧max∫︁
𝑧min

𝜌

(︂
𝑟

𝜌

)︂𝑛

𝑑𝑧 = 𝑟

𝑧max∫︁
𝑧min

(︂
𝑟

𝜌

)︂𝑛−1

𝑑𝑧

and
𝑧max∫︁

𝑧min

𝑅

(︂
𝑟

𝜌

)︂𝑛

𝑑𝑧 = 𝑅

𝑧max∫︁
𝑧min

(︂
𝑟

𝜌

)︂𝑛

𝑑𝑧

with appropriate lower and upper limits. That is, only the antiderivatives of the form

𝐹𝑛(𝑟, 𝑧) =

∫︁ (︂
𝑟

𝜌

)︂𝑛

𝑑𝑧
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with integer 𝑛 from −1 to the highest angular order are needed. They all can be computed analytically and are listed
in the following table (as a reminder, 𝜌 =

√
𝑟2 + 𝑧2):

𝑛 𝐹𝑛(𝑟, 𝑧)

−1 1
2𝑧

(︁
𝑟
𝜌

)︁−1

+ 1
2𝑟 ln(𝑧 + 𝜌)

0 𝑧

1 𝑟 ln(𝑧 + 𝜌)

2 𝑟 arctan 𝑧
𝑟

3 𝑧
(︁

𝑟
𝜌

)︁
4 1

2𝑧
(︁

𝑟
𝜌

)︁2

+ 1
2𝑟 arctan

𝑧
𝑟

5 1
3𝑧

(︁
𝑟
𝜌

)︁3

+ 2
3𝑧

(︁
𝑟
𝜌

)︁
6 1

4𝑧
(︁

𝑟
𝜌

)︁4

+ 3
8𝑧

(︁
𝑟
𝜌

)︁2

+ 3
8𝑟 arctan

𝑧
𝑟

...
...

2𝑚 ⩾ 2 𝑧
𝑚−1∑︀
𝑘=1

𝑎𝑘

(︁
𝑟
𝜌

)︁2𝑘

+ 𝑎1𝑟 arctan
𝑧
𝑟 , 𝑎𝑘 =

∏︀𝑚−1
𝑙=𝑘+1(2𝑙 − 1)∏︀𝑚−1

𝑙=𝑘 (2𝑙)

2𝑚+ 1 ⩾ 3 𝑧
𝑚−1∑︀
𝑘=0

𝑎𝑘

(︁
𝑟
𝜌

)︁2𝑘+1

, 𝑎𝑘 =

∏︀𝑚−1
𝑙=𝑘+1(2𝑙)∏︀𝑚−1

𝑙=𝑘 (2𝑙 + 1)

(The general expression assume the usual convention that an empty product equals 1, and an empty sum equals 0.) A
simple recurrence relation exists for 𝑛 ̸= 0:

𝐹𝑛+2(𝑟, 𝑧) =
1

𝑛
𝑧

(︂
𝑟

𝜌

)︂𝑛

+
𝑛− 1

𝑛
𝐹𝑛(𝑟, 𝑧).

The integration limits have the form

𝑧𝑅 =

{︃√
𝑅2 − 𝑟2, 𝑟 < 𝑅,

0 otherwise

and are [𝑧𝑅−1, 𝑧𝑅] for the inner part 𝑏𝑅
(︀
𝜌 ∈ [𝑅 − 1, 𝑅]

)︀
= 𝜌 − (𝑅 − 1) and [𝑧𝑅, 𝑧𝑅+1] for the outer part 𝑏𝑅

(︀
𝜌 ∈

[𝑅,𝑅+ 1]
)︀
= (𝑅+ 1)− 𝜌:
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0 r R 1 R R + 1
0

zR 1

zR

zR + 1

The 𝜌 values corresponding to the integration limits (for substitution in the antiderivatives 𝐹𝑛) have an even simpler
form:

𝜌|𝑧=𝑧𝑅 =
√︁

𝑟2 + 𝑧2𝑅 = max(𝑟,𝑅),

and hence (︂
𝑟

𝜌

)︂⃒⃒⃒⃒
𝑧=𝑧𝑅

= min
(︁ 𝑟

𝑅
, 1
)︁
.

The arctan 𝑧𝑅
𝑟 terms can also be “simplified” to arccos 𝑟

𝜌

⃒⃒⃒
𝑧=𝑧𝑅

= arccos 𝑟
𝑅 for 𝑟 < 𝑅 and 0 otherwise, or

arccos
[︀
min

(︀
𝑟
𝑅 , 1

)︀]︀
. This seems to be more computationally efficient on modern systems, although previously it was

the other way around, since arccos was implemented in libraries through arctan2 (FPATAN), square root (FSQRT)
and arithmetic operations.

Collecting all the pieces together, we get the following expression for the radial parts of the projections:

𝑝𝑅;𝑛(𝑟) = 4[𝑟𝐹𝑛−1(𝑟, 𝑧𝑅)−𝑅𝐹𝑛(𝑟, 𝑧𝑅)]−
− 2[𝑟𝐹𝑛−1(𝑟, 𝑧𝑅−1)− (𝑅− 1)𝐹𝑛(𝑟, 𝑧𝑅−1)]−
− 2[𝑟𝐹𝑛−1(𝑟, 𝑧𝑅+1)− (𝑅+ 1)𝐹𝑛(𝑟, 𝑧𝑅+1)].

Like 𝑏0(𝜌), the 𝑝0;𝑛(𝑟) functions do not have the inner part, so for them (𝑅 = 0, 𝑧𝑅 = 0, 𝑅+1 = 1) the expression is

𝑝0;𝑛(𝑟) = 2[𝑟𝐹𝑛−1(𝑟, 0)− 𝐹𝑛(𝑟, 0)]− 2[𝑟𝐹𝑛−1(𝑟, 𝑧1)− 𝐹𝑛(𝑟, 𝑧1)] =

= 2[𝐹𝑛(𝑟, 𝑧1)− 𝐹𝑛(𝑟, 0)]− 2𝑟[𝐹𝑛−1(𝑟, 𝑧1)− 𝐹𝑛−1(𝑟, 0)].

However, in practice 𝑅 = 0 corresponds to the single central pixel, and at the integer grid we have 𝑝0;0(𝑟) = 𝛿𝑟,0 and
𝑝0;𝑛>0(𝑟) = 0, that is the intensity at 𝑟 = 0 must be assumed isotropic.

Here are examples of 𝑝𝑅;𝑛(𝑟) plotted for 𝑅 = 6 and 𝑛 = 0, 1, 2, together with the radial part of the distribution basis
function 𝑏𝑅(𝑟):
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The projection functions have a large curvature near 𝑟 ≈ 𝑅 and thus are not well represented by piecewise linear
approximations at the integer grid, as illustrated below (the solid red line is the same 𝑝6;2(𝑟) as above):
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1 px peak
its projection
3 px peak
its projection

This was not a problem for the reconstruction method developed in1, since it samples these functions at each pixel, with
their 𝑟 =

√︀
𝑥2 + 𝑦2 values not limited to integers. But expanding piecewise linear radial distributions over the basis

of these curved 𝑝𝑅;𝑛 might be problematic. However, as the cyan curves illustrate, even for a peak with just 3 nonzero
points, its projection is represented by linear segments significantly better. Therefore, for real experimental data with
adequate sampling (peak widths > 2 pixels), the piecewise linear approximation should work reasonably well.

1 M. Ryazanov, “Development and implementation of methods for sliced velocity map imaging. Studies of overtone-induced dissociation and
isomerization dynamics of hydroxymethyl radical (CH2OH and CD2OH)”, Ph.D. dissertation, University of Southern California, 2012. (ProQuest,
USC).
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Transform

The initial 3D distribution has the form

𝐼(𝜌, 𝜃′) =
∑︁
𝑛

𝐼𝑛(𝜌) cos
𝑛 𝜃′,

where 𝐼𝑛(𝜌) are the radial distributions for each angular order. They are represented as a linear combination of the
radial basis functions:

𝐼𝑛(𝜌) =
∑︁
𝑅

𝑐𝑅,𝑛𝑏𝑅(𝜌).

The forward Abel transform of this 3D distribution (in other words, its projection, or the experimentally recorded image)
then has the form

𝑃 (𝑟, 𝜃) =
∑︁
𝑛

𝑃𝑛(𝜌) cos
𝑛 𝜃,

where 𝑃𝑛(𝑟) are its radial distributions for each angular order (not to be confused with Legendre polynomials) and are
represented as linear combinations of the radial projected basis functions:

𝑃𝑛(𝑟) =
∑︁
𝑅

𝑐𝑅,𝑛𝑝𝑅;𝑛(𝑟)

with the same coefficients 𝑐𝑅,𝑛.

If the radial distributions of both the initial distribution and its projection are sampled at integer radii, these linear
combinations can be written in vector-matrix notation as

𝐼𝑛(𝜌) = BTc𝑛, B𝑖𝑗 = 𝑏𝑅=𝑖(𝜌 = 𝑗),

𝑃𝑛(r) = PT
𝑛c𝑛, (P𝑛)𝑖𝑗 = 𝑝𝑅=𝑖;𝑛(𝑟 = 𝑗)

for each angular order 𝑛.

It is obvious from the definition of 𝑏𝑅(𝜌) that B is an identity matrix, so the expansion coefficients are simply c𝑛 =
𝐼𝑛(𝜌). Thus the forward and inverse Abel transforms can be computed as

𝑃𝑛(r) = PT
𝑛𝐼𝑛(𝜌),

𝐼𝑛(𝜌) =
(︀
PT

𝑛

)︀−1
𝑃𝑛(r)

for each angular order separately. Since all projected basis functions satisfy 𝑝𝑅;𝑛(𝑟 ⩾ 𝑅 + 1) = 0 (see the plots
above), the matrices PT

𝑛 are upper triangular, and their inversions
(︀
PT

𝑛

)︀−1 are also upper triangular for all 𝑛, which
additionally facilitates the computations. (This triangularity makes the inverse Abel transform similar to the “onion
peeling” procedure written in a matrix form, but based on linear interpolation for spherical shells instead of midpoint
rectangular approximation for cylindrical rings.)

Overall, the transforms proceed as follows:

1. Radial distributions for each angular order are extracted from the input data using abel.tools.vmi.
Distributions. This takes 𝑂(𝑁 𝑅2

max) time, where 𝑁 is the number of angular terms, and 𝑅max is the largest
analyzed radius (assuming 𝑁 ≪ 𝑅max).

2. Radial projected basis functions are computed to construct the P𝑛 matrices, also in 𝑂(𝑁 𝑅2
max) total time.

3. For the inverse Abel transform, the PT
𝑛 matrices are inverted, in 𝑂(𝑁 𝑅3

max) total time. This step is not needed
for the forward Abel transform.

4. The radial distributions from step 1 are multiplied by the transform matrices PT
𝑛 or

(︀
PT

𝑛

)︀−1 to obtain the recon-
structed radial distributions, in 𝑂(𝑁 𝑅2

max) total time.
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5. If the transformed image is needed, it is constructed from its radial distributions obtained in step 4 using the first
formula in this section. This takes 𝑂(𝑁 𝑅2

max) time.

That is, only step 3 has time complexity that scales cubically with the image size, and all other steps have quadratic
complexity. However, for the forward Abel transform, step 3 is not needed at all, and for the inverse Abel transform,
its results can be cached. Thus processing a sequence of images takes time linearly proportional to the total number of
processed pixels. In other words, the pixel throughput is independent of the image size.

Regularizations

The matrix equation

y = Ax

(in our case the vector x represents the radial part of the sought 3D distribution, the matrix A represents the forward
Abel transform, and the vector y represents the radial part of the recorded projection) can be solved as

x = A−1y

if A is invertible. However, if the problem is ill-conditioned, computing A−1 might be problematic, and the solution
might have undesirably amplified noise.

Regularization methods try to replace the ill-conditioned problem with a related better-conditioned one and use its
solution as a well-behaved approximation to the solution of the original problem.

Tikhonov

Instead of inverting A explicitly, the solution of y = Ax can be found as

x = argmin
x

(y −Ax)2,

from a quadratic minimization (“least-squares”) problem, which is equivalent to the original problem, but makes evident
that for ill-conditioned problems the minimum is very “flat”, and many different vectors x can be accepted as a solution.

The idea of Tikhonov regularization is to add some small “regularizing” term to this minimization problem:

x̃ = argmin
x

[︀
(y −Ax)2 + 𝑔[x]

]︀
that will help to select the “best” solution by imposing larger penalty on undesirable solutions. If this term is also a
quadratic form

𝑔[x] = (Γx)2

with some matrixΓ (not necessarily square), then the quadratic minimization problem is reduced back to a linear matrix
equation and has the solution

x̃ = AT
(︀
AAT + ΓΓT

)︀−1
y.

In practice, it is convenient to define Γ = 𝜀Γ0 with some fixed Γ0 and change the “Tikhonov factor” 𝜀 to adjust the
regularization “strength”. The form of Γ0 selects the regularization type:
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𝐿2 norm

This is the simplest case, with Γ0 = I, the identity matrix. That is, the penalty functional 𝑔[x] = 𝜀2x2 is the quadratic
norm of the solution scaled by the regularization parameter.

The idea is that, in a continuous limit, if we have a well-behaved function 𝑓(𝑟) and some random noise 𝛿(𝑟), then

𝑔[𝑓(𝑟) + 𝛿(𝑟)] =

∫︁
[𝑓(𝑟) + 𝛿(𝑟)]2 𝑑𝑟 =

=

∫︁
[𝑓(𝑟)]2 𝑑𝑟⏟  ⏞  
𝑔[𝑓(𝑟)]

+ 2

∫︁
𝑓(𝑟)𝛿(𝑟) 𝑑𝑟⏟  ⏞  
≈ 0

+

∫︁
[𝛿(𝑟)]2 𝑑𝑟⏟  ⏞  
> 0

.

In other words, a noisy solution will have a larger penalty than a smooth solution, unless the noise is correlated, and a
smooth solution will be preferred as long as the noise forward transforms is close to zero (‖𝒜𝛿(𝑟)‖ < ‖𝛿(𝑟)‖).

Notice, however, that for very large Tikhonov factors the regularization term starts to dominate in the minimization
problem, which tends to

x̃ = 𝜀2 argmin
x

x2

and thus has the solution x̃→ 0. For reasonable regularization strengths this intensity suppression effect is small, but
the solution is always biased towards zero.

Finite differences

Here the first-order finite difference operator is used as the Tikhonov matrix:

Γ0 =

⎛⎜⎜⎜⎜⎜⎜⎝
−1 1 0 0 · · ·

0 −1 1 0 · · ·

0 0 −1 1
. . .

...
...

. . . . . . . . .

⎞⎟⎟⎟⎟⎟⎟⎠ .

It is the discrete analog of the differentiation operator, so in a continuous limit this regularization corresponds to using
the penalty functional of the form

𝑔[𝑓(𝑟)] =

∫︁ (︂
𝑑𝑓(𝑟)

𝑑𝑟

)︂2

𝑑𝑟.

Noisy functions obviously have larger RMS derivatives that smooth functions and thus are penalized more.

Unlike the 𝐿2-norm regularization, which tends to avoid sign-changing functions and oscillating functions in general,
this regularization can produce noticeably overshoots (including negative) around sharp features in the distribution.
However, it tends to preserve the overall intensity.
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Truncated SVD

This is the method mentioned in the pBasex article2 (but not actually used in the original pBasex implementation).
The idea is that since the condition number of a matrix equals the ratio of its maximal and minimal singular values,
performing the singular value decomposition (SVD),

UΣVT = A,

inverting Σ (which is diagonal), then excluding its largest values values and assembling the pseudoinverse

Ã−1 = VΣ̃−1UT

gives a better-conditioned matrix approximation of A−1, which is then used to obtain the approximate solution

x̃ = Ã−1y.

This approach can be helpful when the left singular vectors (columns of V, which become linear contributions to x) are
physically meaningful and different for the useful signal and the undesirable noise. Then removing the singular values
corresponding to the undesirable vectors excludes them from the solution, while retaining the useful contributions.
However, this is not the case for our problem. Here are the singular values 𝜎𝑖 of A−1 plotted together with some
representative left singular vectors v𝑖:

2 G. A. Garcia, L. Nahon, I. Powis, “Two-dimensional charged particle image inversion using a polar basis function expansion”, Rev. Sci. Instrum.
75, 4989–4996 (2004).
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As can be seen, all these vectors are oscillatory, with negative values, and most of them are delocalized over the whole
radial range. That is, they do not have a clear physical meaning for practical applications of the Abel transform.

The only potentially useful observation is that the first vectors, corresponding to the largest singular values, have the
highest spacial frequencies and contribute mostly to the lower 𝑟 range. Thus excluding them might reduce the high-
frequency noise near the center of the transformed image. It should be noted, however, that a simple SVD truncation
leads to the same problems with delocalized oscillations and the Gibbs phenomenon, as in truncated Fourier series.
(From this perspective, soft attenuation, like in the Tikhonov regularization, is a more appropriate approach.)

So this method is not recommended for practical applications and is provided here mostly for completeness.
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Non-negative components

This is the simplest nonlinear regularization method proposed inPage 142, 1. The idea is that the linear matrix equation

y = Ax

is replaced by the minimization problem

x̃ = argmin
x ⩾ 0

(y −Ax)2

with a physically meaningful constraint that the solution (the intensity distribution) must be non-negative everywhere.
If the linear solution happens to be non-negative, this modified problem has exactly the same solution. Otherwise the
minimization problem gives the closest (in the least-squares sense) non-negative approximation to the original problem.

Unfortunately, applying non-negativity constraint to trigonometric polynomials,

𝐼(𝜃) =
∑︁

𝑎𝑛 cos
𝑛 𝜃 ⩾ 0 for all 𝜃,

generally leads to a system of nonlinear inequalities for their coefficients, which cannot be solved efficiently.

However, if the polynomial has no more that two terms, that is its order is 0, 1, or 2 with even powers only, the constraints
are linear and can be linearly transformed into nonnegativity constraints on the coefficients:

𝐼(𝜃) = 𝑐0 cos
0 𝜃 ⩾ 0 ⇔ 𝑐0 ⩾ 0;

𝐼(𝜃) = 𝑐0 cos
0 𝜃 + 𝑐1 cos

1 𝜃 =

= 𝑎0(cos
0 𝜃 + cos1 𝜃) +

+ 𝑎1(cos
0 𝜃 − cos1 𝜃) ⩾ 0 ⇔ 𝑎𝑖 ⩾ 0;

𝐼(𝜃) = 𝑐0 cos
0 𝜃 + 𝑐2 cos

2 𝜃 =

= 𝑎0(cos
0 𝜃 − cos2 𝜃) +

+ 𝑎2 cos
2 𝜃 ⩾ 0 ⇔ 𝑎𝑖 ⩾ 0.

Notice that in the last case the term 𝑎0(cos
0 𝜃− cos2 𝜃) = 𝑎0 sin

2 𝜃 corresponds to perpendicular transitions, whereas
𝑎2 cos

2 𝜃 corresponds to parallel transitions, so the inequalities 𝑎𝑖 ⩾ 0 have a direct physical meaning that both transi-
tion components must be non-negative.

The quadratic minimization problem with linear constraints reduces to a sequence of linear problems and is soluble
exactly in a finite number of steps.

In some cases the non-negative solution can be positively biased, since it does not allow negative noise, but can have
some positive noise. Nevertheless, this bias is smaller than the positive bias introduced by zeroing negative values in
solutions obtained by linear methods (never do this!).

The idea of non-negative transition components can be extended to multiphoton processes without interference between
different channels, so that

𝐼(𝜃) =
(︁
𝑎
(1)
0 sin2 𝜃 + 𝑎

(1)
2 cos2 𝜃

)︁
×

×
(︁
𝑎
(2)
0 sin2 𝜃 + 𝑎

(2)
2 cos2 𝜃

)︁
×

× · · ·×

×
(︁
𝑎
(𝑚)
0 sin2 𝜃 + 𝑎

(𝑚)
2 cos2 𝜃

)︁
, 𝑎

(𝑗)
𝑖 ⩾ 0,

which also leads to a linear combination with non-negative coefficients:

𝐼(𝜃) =
∑︁

𝑏𝑛 sin
𝑚 𝜃 · cos𝑛 𝜃, 𝑏𝑛 ⩾ 0.
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These constraints, however, are stronger than the intensity non-negativity: for example, the angular distribution

sin4 𝜃 − 2 sin2 𝜃 · cos2 𝜃 + cos4 𝜃 =
(︀
sin2 𝜃 − cos2 𝜃

)︀2
is non-negative everywhere, but contains a negative coefficient for the sin2 𝜃 · cos2 𝜃 term. So even though this regu-
larization is not always valid for multiphoton processes, it can be useful in some cases and is easy to implement. To
remind that it is not “truly non-negative”, this regularization is called “positive” here.

A general advice applicable to all regularization methods is that when a relevant model is available, it is better to fit it
directly to non-regularized results, thus avoiding additional assumptions and biases introduced by regularizations.

Examples

Warning: Absolute and relative efficiencies of these regularization methods and their optimal parameters depend
on the image size, the amount of noise and the distribution itself. Therefore do not assume that the examples shown
here are directly relevant to your data.

Some properties of the regularization methods described above are demonstrated here by applying them to a synthetic
example. The test distribution from the BASEX article is forward Abel-transformed to obtain its projection, and then
Poissonian noise is added to it to simulate experimental VMI data with relatively low signal levels (such that the noise
is prominent):

test source simulated projection

In order to characterize the regularization performance, all the methods are applied at various strengths to this simulated
projection, and the relative root-mean-square error

⃦⃦
𝐼(𝑟)−𝐼src(𝑟)

⃦⃦⧸︀⃦⃦
𝐼src(𝑟)

⃦⃦
, where 𝐼src(𝑟) is the “true” radial intensity

distribution, and 𝐼(𝑟) is the reconstructed distribution, is calculated in each case. The following plot shows how this
reconstruction error changes with the regularization strength (the non-parameterized “pos” method is shown by a dashed
line):
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(Note that the horizontal axis in the left plot is nonlinear, and that the vertical axis in the right plot does not start at zero
and actually spans a very small range.)

These plots demonstrate that the Tikhonov methods have some optimal strength value, at which the reconstruction error
is minimized. At smaller values the noise is not suppressed enough (zero strength corresponds to the non-regularized
transform), and at larger values the reconstructed distribution is smoothed too much.

The SVD plot has steps corresponding to successive removal of singular values. The reconstruction error does not
decrease monotonically, but exhibits several local minima before starting to grow. Notice that even the global minimum
is only slightly better than no regularization.

The actual reconstructed images for each regularization method at its optimal strength are shown below with their radial
intensity distributions:
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Using reg=None

None
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The non-regularized transform results are shows as a reference. The image has red colors for positive intensities and
blue colors for negative intensities. The upper plot shows the reconstructed radial intensity distribution in black and
the “true” distribution in red behind it. The lower plot shows the the difference between these two distributions in blue
(red is the zero line).

Using reg=('L2', 75)
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The noise level is generally reduced, but the peaks near the origin are noticeably broadened, which actually increases
deviations in this region.

Using reg=('diff', 100)

diff
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The noise is reduced even more, especially its high-frequency components. The peaks near the origin also suffer, but
somewhat differently.

Using reg=('SVD', 0.075)

SVD
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The only noticeable difference from no regularization is some noise reduction near the origin.

Using reg='pos'

pos
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The most prominent feature is the absence of negative intensities. The noise is reduced significantly in the areas of
low intensity, where it is constrained from attaining negative values, which also reduces its positive amplitudes, as
the distribution should be reproduced on average. The peaks, being strongly positive, do not have noticeable noise
reduction. However, in contrast to other methods, the peaks near the origin are not broadened, while the off-peak noise
near them is reduced.

4.10 Three Point

4.10.1 Introduction

The “Three Point” Abel transform method exploits the observation that the value of the Abel inverted data at any radial
position r is primarily determined from changes in the projection data in the neighborhood of r. This technique was
developed by Dasch1.

1 C. J. Dasch, “One-dimensional tomography: a comparison of Abel, onion-peeling, and filtered backprojection methods”, Appl. Opt. 31,
1146–1152 (1992).
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4.10.2 How it works

The projection data (raw data P) is expanded as a quadratic function of 𝑟− 𝑟𝑗* in the neighborhood of each data point
in P. In other words, P′(𝑟) = 𝑑𝑃/𝑑𝑟 is estimated using a 3-point approximation (to the derivative), similar to central
differencing. Doing so enables an analytical integration of the inverse Abel integral around each point 𝑟𝑗 . The result
of this integration is expressed as a linear operator D, operating on the projection data P to give the underlying radial
distribution F.

4.10.3 When to use it

Dasch recommends this method based on its speed of implementation, robustness in the presence of sharp edges, and
low noise. He also notes that this technique works best for cases where the real difference between adjacent projections
is much greater than the noise in the projections. This is important, because if the projections are oversampled (raw data
P taken with data points very close to each other), the spacing between adjacent projections is decreased, and the real
difference between them becomes comparable with the noise in the projections. In such situations, the deconvolution
is highly inaccurate, and the projection data P must be smoothed before this technique is used. (Consider smoothing
with scipy.ndimage.gaussian_filter.)

4.10.4 How to use it

To complete the inverse transform of a full image with the three_point method, simply use the abel.Transform
class:

abel.Transform(myImage, method='three_point', direction='inverse').transform

Note that the forward Three point transform is not yet implemented in PyAbel.

If you would like to access the Three Point algorithm directly (to transform a right-side half-image), you can use abel.
dasch.three_point_transform().

4.10.5 Example

# -*- coding: utf-8 -*-
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

"""example_dasch_methods.py.
"""

import numpy as np
import abel
import matplotlib.pyplot as plt

# Dribinski sample image size 501x501
n = 501
IM = abel.tools.analytical.SampleImage(n).func

# split into quadrants
origQ = abel.tools.symmetry.get_image_quadrants(IM)

(continues on next page)
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(continued from previous page)

# speed distribution of original image
orig_speed = abel.tools.vmi.angular_integration_3D(origQ[0], origin=(-1, 0))
scale_factor = orig_speed[1].max()

plt.plot(orig_speed[0], orig_speed[1]/scale_factor, linestyle='dashed',
label="Dribinski sample")

# forward Abel projection
fIM = abel.Transform(IM, direction="forward", method="hansenlaw").transform

# split projected image into quadrants
Q = abel.tools.symmetry.get_image_quadrants(fIM)

dasch_transform = {
"two_point": abel.dasch.two_point_transform,
"three_point": abel.dasch.three_point_transform,
"onion_peeling": abel.dasch.onion_peeling_transform

}

for method in dasch_transform.keys():
Q0 = Q[0].copy()

# method inverse Abel transform
AQ0 = dasch_transform[method](Q0)

# speed distribution
speed = abel.tools.vmi.angular_integration_3D(AQ0, origin=(-1, 0))

plt.plot(speed[0], speed[1]*orig_speed[1][14]/speed[1][14]/scale_factor,
label=method)

plt.title("Dasch methods for Dribinski sample image $n={:d}$".format(n))
plt.xlim((0, 250))
plt.legend(loc='upper center', bbox_to_anchor=(0.35, 1), frameon=False)
plt.tight_layout()
# plt.savefig("plot_example_dasch_methods.png",dpi=100)
plt.show()

4.10. Three Point 155



PyAbel Documentation, Release 0.9.0

0 50 100 150 200 250

0.0

0.2

0.4

0.6

0.8

1.0

Dasch methods for Dribinski sample image n = 501
Dribinski sample
two_point
three_point
onion_peeling

4.10.6 Notes

The algorithm contained two typos in Eq. (7) in the original citationPage 153, 1. A corrected form of these equations is
presented in Karl Martin’s 2002 PhD thesis2. PyAbel uses the corrected version of the algorithm.

For more information on the PyAbel implementation of the three-point algorithm, please see issue #61 and Pull Request
#64.

4.10.7 Citation

• C. J. Dasch, “One-dimensional tomography: a comparison of Abel, onion-peeling, and filtered backprojection
methods”, Appl. Opt. 31, 1146–1152 (1992).

• K. Martin, PhD Thesis: “Acoustic Modification of Sooting Combustion”, University of Texas at Austin (2002)
(record, PDF).

2 K. Martin, PhD Thesis: “Acoustic Modification of Sooting Combustion”, University of Texas at Austin (2002) (record, PDF).
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4.11 Two Point (Dasch)

4.11.1 Introduction

The “Dasch two-point” deconvolution algorithm is one of several described in the Dasch paper1. See also the “three-
point” and “onion peeling” descriptions.

4.11.2 How it works

The Abel integral is broken into intervals between the 𝑟𝑗 points, and 𝑃 ′(𝑟) is assumed constant between 𝑟𝑗 and 𝑟𝑗+1.

4.11.3 When to use it

This method is simple and computationally very efficient. The method incorporates no smoothing.

4.11.4 How to use it

To complete the inverse transform of a full image with the two_point method, simply use the abel.Transform
class:

abel.Transform(myImage, method='two_point').transform

If you would like to access the two_point algorithm directly (to transform a right-side half-image), you can use abel.
dasch.two_point_transform().

4.11.5 Example

# -*- coding: utf-8 -*-
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

"""example_dasch_methods.py.
"""

import numpy as np
import abel
import matplotlib.pyplot as plt

# Dribinski sample image size 501x501
n = 501
IM = abel.tools.analytical.SampleImage(n).func

# split into quadrants
origQ = abel.tools.symmetry.get_image_quadrants(IM)

(continues on next page)

1 C. J. Dasch, “One-dimensional tomography: a comparison of Abel, onion-peeling, and filtered backprojection methods”, Appl. Opt. 31,
1146–1152 (1992).
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# speed distribution of original image
orig_speed = abel.tools.vmi.angular_integration_3D(origQ[0], origin=(-1, 0))
scale_factor = orig_speed[1].max()

plt.plot(orig_speed[0], orig_speed[1]/scale_factor, linestyle='dashed',
label="Dribinski sample")

# forward Abel projection
fIM = abel.Transform(IM, direction="forward", method="hansenlaw").transform

# split projected image into quadrants
Q = abel.tools.symmetry.get_image_quadrants(fIM)

dasch_transform = {
"two_point": abel.dasch.two_point_transform,
"three_point": abel.dasch.three_point_transform,
"onion_peeling": abel.dasch.onion_peeling_transform

}

for method in dasch_transform.keys():
Q0 = Q[0].copy()

# method inverse Abel transform
AQ0 = dasch_transform[method](Q0)

# speed distribution
speed = abel.tools.vmi.angular_integration_3D(AQ0, origin=(-1, 0))

plt.plot(speed[0], speed[1]*orig_speed[1][14]/speed[1][14]/scale_factor,
label=method)

plt.title("Dasch methods for Dribinski sample image $n={:d}$".format(n))
plt.xlim((0, 250))
plt.legend(loc='upper center', bbox_to_anchor=(0.35, 1), frameon=False)
plt.tight_layout()
# plt.savefig("plot_example_dasch_methods.png",dpi=100)
plt.show()
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For more information on the PyAbel implementation of the two_point algorithm, please see PR #155.

4.11.6 Citation

• C. J. Dasch, “One-dimensional tomography: a comparison of Abel, onion-peeling, and filtered backprojection
methods”, Appl. Opt. 31, 1146–1152 (1992).
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Chapter 5

Anisotropy Parameter

For linearly polarized light the angular distribution of photodetached electrons from negative ions is given by

𝐼(𝜖, 𝜃) =
𝜎total(𝜖)

4𝜋
[1 + 𝛽(𝜖)𝑃2(cos 𝜃)],

where 𝛽(𝜖) is the electron kinetic energy (𝜖) dependent anisotropy parameter, which varies between −1 and +2,
and 𝑃2(cos 𝜃) is the 2nd-order Legendre polynomial in cos 𝜃. 𝜎total is the total photodetachment cross section. The
anisotropy parameter provides phase information about the dynamics of the photon process1.

5.1 Methods

PyAbel provides several methods to determine the anisotropy parameter 𝛽:

Method 1: linbasex evaluates 𝛽 directly, available as the class attribute Beta[1].

This method fits spherical harmonic functions to the velocity-map image to directly determine
the anisotropy parameter as a function of the radial coordinate. This parameter has greater
uncertainty in radial regions of low intensity, and so it is commonly plotted as the product
𝐼 × 𝛽. See Example: Linbasex.

1 J. Cooper, R. N. Zare, “Angular Distribution of Photoelectrons”, J. Chem. Phys. 48, 942–943 (1968).
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Method 2: using abel.tools.vmi.radial_integration().

This method determines the anisotropy parameter from the inverse Abel-transformed image, by
extracting intensity vs angle for each specified radial range and then fitting the intensity formula
given above. This method is best applied to the radial ranges corresponding to strong spectral
intensity in the image. It has the advantage of providing the least-squares fit error estimate for
the parameter(s).

Method 3: using abel.tools.vmi.Distributions.

This method, like the previous one, works on the inverse Abel-transformed image, but fits the
angular intensity dependence at each radius, providing radially dependent anisotropy param-
eters, like in the first method. If the anisotropy parameters are known to be smooth radial
functions, a moving-window averaging can be employed for noise reduction.

5.2 Example

See Example: Anisotropy parameter. In this case the anisotropy parameter is determined using each method. Note:

• In method 1, the filter parameter threshold=0.2 is set to a larger value so as to exclude evaluation in regions
of weak intensity.

• Method 2 evaluates the anisotropy parameter for particular radial regions of strong intensity.

• In method 3, the anisotropy parameter is calculated with 9-pixel radial averaging and plotted only in the regions
with > 1 % of the maximal intensity.
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A demonstration of using Distributions for incomplete images is also included in Example: rBasex beam block.
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Circularization of Images

6.1 Background

While the Abel transform only assumes cylindrical symmetry, often the objects to be transformed also have some degree
of spherical symmetry, (i.e., features that appear at a constant radius for all angles) and thus the 2D projection should
be perfectly circular. Experimental images may have distortions in the circular charged particle energy structure, due
to, for example, stray magnetic fields, or optical distortion of the camera lens that images the particle detector. The
effect of distortion is to degrade the radial (or velocity or kinetic energy) resolution, since a particular energy peak will
“walk” in radial position, depending on the particular angular position on the detector. Imposing a physical circular
distribution of particles, may substantially improve the kinetic energy resolution, at the expense of uncertainly in the
absolution kinetic-energy position of the transition.

6.2 Approach

The algorithm is implemented in abel.tools.circularize.circularize_image() compares the radial positions
of strong features in angular slice intensity profiles. i.e. follow the radial position of a peak as a function of angle. A
linear correction is applied to the radial grid to align the peak at each angle.

before after
^ ^ slice0
^ ^ slice1

^ ^ slice2
^ ^ slice3
: :
^ ^ slice#

radial peak position

Peak alignment is achieved through a radial scaling factor𝑅𝑖(actual) = 𝑅𝑖×scalefactor𝑖. The scalefactor is determined
by a choice of methods, argmax, where 𝑠𝑐𝑎𝑙𝑒𝑓𝑎𝑐𝑡𝑜𝑟𝑖 = 𝑅0/𝑅𝑖, with 𝑅0 a reference peak. Or lsq, which directly
determines the radial scaling factor that best aligns adjacent slice intensity profiles.

This is a simplified radial scaling version of the algorithm described in J. R. Gascooke, S. T. Gibson, W. D. Lawrance,
“A ‘circularisation’ method to repair deformations and determine the centre of velocity map images”, J. Chem. Phys.
147, 013924 (2017).
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6.3 Implementation

Cartesian (𝑦, 𝑥) image is converted to a polar coordinate image (𝑟, 𝜃) for easy slicing into angular blocks. Each radial
intensity profile is compared with its adjacent slice, providing a radial scaling factor that best aligns the two intensity
profiles.

The set of radial scaling factors, for each angular slice, is then spline interpolated to correct the (𝑦, 𝑥) grid, and the
image remapped to an unperturbed grid.

6.4 How to use it

The circularize_image() function is called directly

IMcirc, angle, radial_correction, radial_correction_function =\
abel.tools.circularize.circularize_image(IM, method='lsq',\
center='slice', dr=0.5, dt=0.1, return_correction=True)

The main input parameters are the image IM, and the number of angular slices, to use, which is set by 2𝜋/𝑑𝑡. The
default dt = 0.1 uses ~63 slices. This parameter determines the angular resolution of the distortion correction function,
but is limited by the signal to noise loss with smaller dt. Other parameters may help better define the radial correction
function.

6.5 Warning

Ensure the returned radial_correction vs angle data is a well behaved function. See the example, below, bottom left
figure. If necessary limit the radial_range=(Rmin, Rmax), or change the value of the spline smoothing parameter
tol.

6.6 Example

import numpy as np
import matplotlib.pyplot as plt
import abel
from abel.tools.circularize import circularize, circularize_image
import scipy.interpolate

#######################################################################
#
# example_circularize_image.py
#
# O- sample image -> forward Abel + distortion = measured VMI
# measured VMI -> inverse Abel transform -> speed distribution
# Compare disorted and circularized speed profiles
#
#######################################################################

# sample image -----------
(continues on next page)
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IM = abel.tools.analytical.SampleImage(n=511, name='Ominus', sigma=2).func

# forward transform == what is measured
IMf = abel.Transform(IM, method='hansenlaw', direction="forward").transform

# flower image distortion
def flower_scaling(theta, freq=2, amp=0.1):

return 1 + amp * np.sin(freq * theta)**4

# distort the image
IMdist = circularize(IMf, radial_correction_function=flower_scaling)

# circularize ------------
IMcirc, sla, sc, scspl = circularize_image(IMdist,

method='lsq', dr=0.5, dt=0.1,
tol=0, return_correction=True)

# inverse Abel transform for distored and circularized images ---------
AIMdist = abel.Transform(IMdist, method="three_point").transform
AIMcirc = abel.Transform(IMcirc, method="three_point").transform

# respective speed distributions
rdist, speeddist = abel.tools.vmi.angular_integration_3D(AIMdist, dr=0.5)
rcirc, speedcirc = abel.tools.vmi.angular_integration_3D(AIMcirc, dr=0.5)

# note the small image size is responsible for the slight over correction
# of the background near peaks

row, col = IMcirc.shape

# plot --------------------

fig, axs = plt.subplots(2, 2, figsize=(8, 8))
fig.subplots_adjust(wspace=0.5, hspace=0.5)

extent = (np.min(-col // 2), np.max(col // 2),
np.min(-row // 2), np.max(row // 2))

axs[0, 0].imshow(IMdist, origin='lower', extent=extent)
axs[0, 0].set_title("Ominus distorted sample image")

axs[0, 1].imshow(AIMcirc, vmin=0, origin='lower', extent=extent)
axs[0, 1].set_title("circ. + inv. Abel")

axs[1, 0].plot(sla, sc, 'o')
ang = np.arange(-np.pi, np.pi, 0.1)
axs[1, 0].plot(ang, scspl(ang))
axs[1, 0].set_xticks([-np.pi, 0, np.pi])
axs[1, 0].set_xticklabels([r"$-\pi$", "0", r"$\pi$"])
axs[1, 0].set_xlabel("angle (radians)")
axs[1, 0].set_ylabel("radial correction factor")
axs[1, 0].set_title("radial correction")

(continues on next page)
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axs[1, 1].plot(rdist, speeddist, label='dist.')
axs[1, 1].plot(rcirc, speedcirc, label='circ.')
axs[1, 1].axis(xmin=100, xmax=240)
axs[1, 1].set_title("speed distribution")
axs[1, 1].legend(frameon=False)
axs[1, 1].set_xlabel('radius (pixels)')
axs[1, 1].set_ylabel('intensity')

plt.tight_layout(h_pad=2, w_pad=2)
# plt.savefig("plot_example_circularize_image.png", dpi=75)
plt.show()
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Examples

7.1 Example: Direct Gaussian

# -*- coding: utf-8 -*-

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

import matplotlib.pyplot as plt
from time import time
import sys

from abel.direct import direct_transform
from abel.tools.analytical import GaussianAnalytical

n = 101
r_max = 30
sigma = 10

ref = GaussianAnalytical(n, r_max, sigma, symmetric=False)

fig, ax = plt.subplots(1, 2)

# forward Abel transform
reconC = direct_transform(ref.func, dr=ref.dr, direction="forward",

correction=True)
reconP = direct_transform(ref.func, dr=ref.dr, direction="forward",

correction=False)

ax[0].set_title('Forward transform of a Gaussian', fontsize='smaller')
ax[0].plot(ref.r, ref.abel, label='Analytical transform')
ax[0].plot(ref.r, reconC, '--', label='correction=True')
ax[0].plot(ref.r, reconP, ':', label='correction=False')
ax[0].set_ylabel('intensity (arb. units)')

(continues on next page)
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ax[0].set_xlabel('radius')

# inverse Abel transform
reconc = direct_transform(ref.abel, dr=ref.dr, direction="inverse",

correction=True)

reconnoc = direct_transform(ref.abel, dr=ref.dr, direction="inverse",
correction=False)

ax[1].set_title('Inverse transform of a Gaussian', fontsize='smaller')
ax[1].plot(ref.r, ref.func, 'C0', label='Original function')
ax[1].plot(ref.r, reconc, 'C1--', label='correction=True')
ax[1].plot(ref.r, reconnoc, 'C2:', label='correction=False')
ax[1].set_xlabel('radius')

for axi in ax:
axi.set_xlim(0, 20)
axi.legend(labelspacing=0.1, fontsize='smaller')

# plt.savefig("plot_example_direct_gaussian.png", dpi=100)
plt.show()
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7.2 Example: O2 PES PAD

# -*- coding: utf-8 -*-
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

import numpy as np
import abel
import bz2

import matplotlib.pylab as plt

# This example demonstrates Hansen and Law inverse Abel transform
# of an image obtained using a velocity map imaging (VMI) photoelecton
# spectrometer to record the photoelectron angular distribution resulting
# from photodetachement of O2- at 454 nm.
# Measured at The Australian National University
# J. Chem. Phys. 133, 174311 (2010) DOI: 10.1063/1.3493349

# Load image as a numpy array - numpy handles .gz, .bz2
imagefile = bz2.BZ2File('data/O2-ANU1024.txt.bz2')
IM = np.loadtxt(imagefile)
# use scipy.misc.imread(filename) to load image formats (.png, .jpg, etc)

rows, cols = IM.shape # image size

# Image center should be mid-pixel, i.e. odd number of colums
if cols % 2 != 1:

print("even pixel width image, make it odd and re-adjust image center")
IM = abel.tools.center.center_image(IM, method="slice")
rows, cols = IM.shape # new image size

r2 = rows//2 # half-height image size
c2 = cols//2 # half-width image size

# Hansen & Law inverse Abel transform
AIM = abel.Transform(IM, method="hansenlaw", direction="inverse",

symmetry_axis=None).transform

# PES - photoelectron speed distribution -------------
print('Calculating speed distribution:')

r, speed = abel.tools.vmi.angular_integration_3D(AIM)

# normalize to max intensity peak
speed /= speed[200:].max() # exclude transform noise near centerline of image

# PAD - photoelectron angular distribution ------------
print('Calculating angular distribution:')
# radial ranges (of spectral features) to follow intensity vs angle
# view the speed distribution to determine radial ranges

(continues on next page)

7.2. Example: O2 PES PAD 169



PyAbel Documentation, Release 0.9.0

(continued from previous page)

r_range = [(93, 111), (145, 162), (255, 280), (330, 350), (350, 370),
(370, 390), (390, 410), (410, 430)]

# map to intensity vs theta for each radial range
Beta, Amp, rad, intensities, theta = \

abel.tools.vmi.radial_integration(AIM, radial_ranges=r_range)

print("radial-range anisotropy parameter (beta)")
for beta, rr in zip(Beta, r_range):

result = " {:3d}-{:3d} {:+.2f}+-{:.2f}"\
.format(rr[0], rr[1], beta[0], beta[1])

print(result)

# plots of the analysis
fig = plt.figure(figsize=(15, 4.5))
ax1 = plt.subplot(131)
ax2 = plt.subplot(132)
ax3 = plt.subplot(133)

# join 1/2 raw data : 1/2 inversion image
vmax = IM[:, :c2-100].max()
AIM *= vmax/AIM[:, c2+100:].max()
JIM = np.concatenate((IM[:, :c2], AIM[:, c2:]), axis=1)
rr = r_range[-3]
intensity = intensities[-3]
beta, amp = Beta[-3], Amp[-3]

# Prettify the plot a little bit:
# Plot the raw data
im1 = ax1.imshow(JIM, origin='lower', vmin=0, vmax=vmax)
fig.colorbar(im1, ax=ax1, fraction=.1, shrink=0.9, pad=0.03)
ax1.set_xlabel('x (pixels)')
ax1.set_ylabel('y (pixels)')
ax1.set_title('VMI, inverse Abel: {:d}x{:d}'.format(rows, cols))

# Plot the 1D speed distribution
ax2.plot(speed)
ax2.plot((rr[0], rr[0], rr[1], rr[1]), (1, 1.1, 1.1, 1), 'r-') # red highlight
ax2.axis(xmin=0, xmax=450, ymin=-0.05, ymax=1.2)
ax2.set_xlabel('radial pixel')
ax2.set_ylabel('intensity')
ax2.set_title('speed distribution')

# Plot anisotropy variation
ax3.plot(theta, intensity, 'r',

label="expt. data r=[{:d}:{:d}]".format(*rr))

def P2(x): # 2nd order Legendre polynomial
return (3*x*x-1)/2

(continues on next page)
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def PAD(theta, beta, amp):
return amp*(1 + beta*P2(np.cos(theta)))

ax3.plot(theta, PAD(theta, beta[0], amp[0]), 'b', lw=2, label="fit")
ax3.annotate("$\\beta = ${:+.2f}+-{:.2f}".format(*beta), (-2, -1.1))
ax3.legend(loc=1, labelspacing=0.1, fontsize='small')

ax3.axis(xmin=-np.pi, xmax=np.pi, ymin=-2, ymax=12)
ax3.set_xlabel("angle $\\theta$ (radians)")
ax3.set_ylabel("intensity")
ax3.set_title("anisotropy parameter")

# Plot the angular distribution
plt.tight_layout()

# Save a image of the plot
# plt.savefig("plot_example_O2_PES_PAD.png", dpi=100)

# Show the plots
plt.show()
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7.3 Example: Hansen–Law

# -*- coding: utf-8 -*-
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

import numpy as np
import abel
import matplotlib.pylab as plt
import bz2

# Hansen and Law inverse Abel transform of velocity-map imaged electrons
# from O2- photodetachement at 454 nm. The spectrum was recorded in 2010

(continues on next page)
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# at the Australian National University (ANU)
# J. Chem. Phys. 133, 174311 (2010) DOI: 10.1063/1.3493349

# load image as a numpy array
# use scipy.misc.imread(filename) to load image formats (.png, .jpg, etc)
print('HL: loading "data/O2-ANU1024.txt.bz2"')
imagefile = bz2.BZ2File('data/O2-ANU1024.txt.bz2')
IM = np.loadtxt(imagefile)

rows, cols = IM.shape # image size

# center image returning odd size
IMc = abel.tools.center.center_image(IM, method='com')

# dr=0.5 may help reduce pixel grid coarseness
# NB remember to also pass as an option to angular_integration
AIM = abel.Transform(IMc, method='hansenlaw',

use_quadrants=(True, True, True, True),
symmetry_axis=None,
transform_options=dict(dr=0.5, align_grid=False),
angular_integration=True,
angular_integration_options=dict(dr=0.5),
verbose=True)

# convert to photoelectron spectrum vs binding energy
# conversion factors depend on measurement parameters
eBE, PES = abel.tools.vmi.toPES(*AIM.angular_integration,

energy_cal_factor=1.204e-5,
photon_energy=1.0e7/454.5, Vrep=-2200,
zoom=IM.shape[-1]/2048)

# Set up some axes
fig = plt.figure(figsize=(15, 4.5))
ax1 = plt.subplot2grid((1, 3), (0, 0))
ax2 = plt.subplot2grid((1, 3), (0, 1))
ax3 = plt.subplot2grid((1, 3), (0, 2))

# raw image
im1 = ax1.imshow(IM, extent=[-512, 512, -512, 512])
fig.colorbar(im1, ax=ax1, fraction=.1, shrink=0.9, pad=0.03)
ax1.set_xlabel('x (pixels)')
ax1.set_ylabel('y (pixels)')
ax1.set_title('velocity map image: size {:d}x{:d}'.format(rows, cols))

# 2D transform
c2 = cols//2 # half-image width
im2 = ax2.imshow(AIM.transform, vmin=0,

vmax=AIM.transform[:c2-50, :c2-50].max(),
extent=[-512, 512, -512, 512])

fig.colorbar(im2, ax=ax2, fraction=.1, shrink=0.9, pad=0.03)
ax2.set_xlabel('x (pixels)')
ax2.set_ylabel('y (pixels)')

(continues on next page)
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ax2.set_title('Hansen Law inverse Abel')

# 1D speed distribution
#ax3.plot(radial, speeds/speeds[200:].max())
#ax3.axis(xmax=500, ymin=-0.05, ymax=1.1)
#ax3.set_xlabel('speed (pixel)')
#ax3.set_ylabel('intensity')
#ax3.set_title('speed distribution')

# PES
ax3.plot(eBE, PES/PES[eBE < 5000].max())
ax3.axis(xmin=0)
ax3.set_xlabel(r'elecron binding energy (cm$^{-1}$)')
ax3.set_ylabel('intensity')
ax3.set_title(r'O${_2}{^-}$ 454 nm photoelectron spectrum')

# Prettify the plot a little bit:
plt.tight_layout()

# save copy of the plot
# plt.savefig('plot_example_hansenlaw.png', dpi=100)

plt.show()
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7.4 Example: Hansen–Law xenon

# -*- coding: utf-8 -*-

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

import numpy as np
import matplotlib.pyplot as plt

import abel
(continues on next page)
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import scipy.misc

# This example demonstrates Hansen and Law inverse Abel transform
# of an image obtained using a velocity map imaging (VMI) photoelecton
# spectrometer to record the photoelectron angular distribution resulting
# from photodetachement of O2- at 454 nm.
# This spectrum was recorded in 2010
# ANU / The Australian National University
# J. Chem. Phys. 133, 174311 (2010) DOI: 10.1063/1.3493349

filename = 'data/Xenon_ATI_VMI_800_nm_649x519.tif'

# Name the output files
name = filename.split('.')[0].split('/')[1]
output_image = name + '_inverse_Abel_transform_HansenLaw.png'
output_text = name + '_speeds_HansenLaw.dat'
output_plot = 'plot_' + name + '_comparison_HansenLaw.png'

print('Loading ' + filename)
#im = np.loadtxt(filename)
im = plt.imread(filename)
(rows, cols) = np.shape(im)
print('image size {:d}x{:d}'.format(rows, cols))

# Step 2: perform the Hansen & Law transform!
print('Performing Hansen and Law inverse Abel transform:')

recon = abel.Transform(im, method="hansenlaw", direction="inverse",
symmetry_axis=None, verbose=True,
origin=(240, 340)).transform

r, speeds = abel.tools.vmi.angular_integration_3D(recon)

# Set up some axes
fig = plt.figure(figsize=(15, 4))
ax1 = plt.subplot(131)
ax2 = plt.subplot(132)
ax3 = plt.subplot(133)

# raw data
im1 = ax1.imshow(im, origin='lower')
fig.colorbar(im1, ax=ax1, fraction=.1, shrink=0.9, pad=0.03)
ax1.set_xlabel('x (pixels)')
ax1.set_ylabel('y (pixels)')
ax1.set_title('velocity map image')

# 2D transform
im2 = ax2.imshow(recon, origin='lower')
fig.colorbar(im2, ax=ax2, fraction=.1, shrink=0.9, pad=0.03)
ax2.set_xlabel('x (pixels)')
ax2.set_ylabel('y (pixels)')

(continues on next page)
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ax2.set_title('Hansen Law inverse Abel')

# 1D speed distribution
ax3.plot(speeds)
ax3.set_xlabel('Speed (pixel)')
ax3.set_ylabel('Yield (log)')
ax3.set_title('Speed distribution')
#ax3.set_yscale('log')

# Prettify the plot a little bit:
plt.tight_layout()

# Save a image of the plot
# plt.savefig(output_plot, dpi=100)

# Show the plots
plt.show()
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7.5 Example: Basex Gaussian

# -*- coding: utf-8 -*-
import numpy as np
import matplotlib.pyplot as plt
import abel

# This example performs a BASEX transform of a simple 1D Gaussian function and
# compares this to the analytical inverse Abel transform

fig, ax = plt.subplots(1, 1)
plt.title('Abel tranforms of a gaussian function')

# Analytical inverse Abel:
n = 101
r_max = 20
sigma = 10

ref = abel.tools.analytical.GaussianAnalytical(n, r_max, sigma, symmetric=False)

(continues on next page)
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ax.plot(ref.r, ref.func, 'b', label='Original signal')
ax.plot(ref.r, ref.abel, 'r', label='Direct Abel transform ×0.05 [analytical]')

center = n // 2

# BASEX Transform:
# Calculate the inverse abel transform for the centered data
recon = abel.basex.basex_transform(ref.abel, verbose=True, basis_dir=None,

dr=ref.dr, direction='inverse')

ax.plot(ref.r, recon, 'o', color='red', label='Inverse transform [BASEX]',
ms=5, mec='none', alpha=0.5)

ax.legend()

ax.set_xlim(0, 20)
ax.set_xlabel('$x$')
ax.set_ylabel('$f(x)$')

plt.legend()
plt.show()
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7.6 Example: Basex photoelectron

# -*- coding: utf-8 -*-

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

import os.path
import numpy as np
import matplotlib.pyplot as plt
import abel

# This example demonstrates a BASEX transform of an image obtained using a
# velocity map imaging (VMI) photoelecton spectrometer to record the
# photoelectron angualar distribution resulting from above threshold ionization
# (ATI) in xenon gas using a ~40 femtosecond, 800 nm laser pulse.
# This spectrum was recorded in 2012 in the Kapteyn-Murnane research group at
# JILA / The University of Colorado at Boulder
# by Dan Hickstein and co-workers (contact DanHickstein@gmail.com)
# https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.109.073004
#
# Before you start your own transform, identify the central pixel of the image.
# It's nice to use a program like ImageJ for this.
# https://imagej.nih.gov/ij/

# Specify the path to the file
filename = os.path.join('data', 'Xenon_ATI_VMI_800_nm_649x519.tif')

# Name the output files
output_image = filename[:-4] + '_Abel_transform.png'
output_text = filename[:-4] + '_speeds.txt'
output_plot = filename[:-4] + '_comparison.pdf'

# Step 1: Load an image file as a numpy array
print('Loading ' + filename)
raw_data = plt.imread(filename).astype('float64')

# Step 2: Specify the origin in (row, col) format
origin = (245, 340)
# or, use automatic centering
# origin = 'com'
# origin = 'gaussian'

# Step 3: perform the BASEX transform!
print('Performing the inverse Abel transform:')

recon = abel.Transform(raw_data, direction='inverse', method='basex',
origin=origin, verbose=True).transform

speeds = abel.tools.vmi.angular_integration_3D(recon)
(continues on next page)
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# Set up some axes
fig = plt.figure(figsize=(15, 4))
ax1 = plt.subplot(131)
ax2 = plt.subplot(132)
ax3 = plt.subplot(133)

# Plot the raw data
im1 = ax1.imshow(raw_data, origin='lower')
fig.colorbar(im1, ax=ax1, fraction=0.1, shrink=0.9, pad=0.03)
ax1.set_xlabel('x (pixels)')
ax1.set_ylabel('y (pixels)')

# Plot the 2D transform
im2 = ax2.imshow(recon, origin='lower', clim=(0, 2000))
fig.colorbar(im2, ax=ax2, fraction=0.1, shrink=0.9, pad=0.03)
ax2.set_xlabel('x (pixels)')
ax2.set_ylabel('y (pixels)')

# Plot the 1D speed distribution

ax3.plot(*speeds)
ax3.set_xlabel('Speed (pixel)')
ax3.set_ylabel('Yield (log)')
ax3.set_yscale('log')
#ax3.set_ylim(1e2, 1e5)

# Prettify the plot a little bit:
plt.tight_layout()

# Show the plots
plt.show()
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7.7 Example: Basex step function

import matplotlib.pyplot as plt
from abel.basex import basex_transform
from abel.tools.analytical import StepAnalytical

# This example calculates the BASEX transform of a step function and
# compares with the analtical result.
fig, ax = plt.subplots(1, 1)
plt.title('Abel tranforms of a step function')

n = 301
r_max = 50
A0 = 10.0
r1 = 6.5
r2 = 14.5

# define a symmetric step function and calculate its analytical Abel transform
st = StepAnalytical(n, r_max, r1, r2, A0)

ax.plot(st.r, st.func, 'b', label='Original signal')

ax.plot(
st.r, st.abel*0.05, 'r',
label='Direct Abel transform x0.05 [analytical]')

center = n//2
right_half = st.abel[center:]
left_half = st.abel[:center+1][::-1]
# BASEX Transform:
# Calculate the inverse abel transform for the centered data
recon_right = basex_transform(right_half, dr=st.dr, verbose=True)
recon_left = basex_transform(left_half, dr=st.dr, verbose=False)
plt.plot(

st.r[center:], recon_right, '--.', c='red',
label='Inverse transform [BASEX]')

plt.plot(st.r[:center+1], recon_left[::-1], '--.', c='red')

ax.legend()

ax.set_xlim(-20, 20)
ax.set_ylim(-5, 20)
ax.set_xlabel('x')
ax.set_ylabel("f(x)")

plt.legend()
plt.show()
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7.8 Example: All Dribinski

# -*- coding: utf-8 -*-

# This example compares some available inverse Abel transform methods
# for the Dribinski sample image

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

from time import time
import matplotlib.pylab as plt
import numpy as np

import abel

fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 6))

# inverse Abel transform methods -----------------------------
(continues on next page)
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transforms = [
"basex",
"direct",
"hansenlaw",
"linbasex",
"onion_peeling",
"rbasex",
"three_point",
"two_point",

]
# number of transforms:
ntrans = len(transforms)

# sample image radius in pixels
R = 150

fIM = abel.tools.analytical.SampleImage(n=2 * R + 1, name="Dribinski").abel
# fIM += np.random.normal(0, 5000, fIM.shape) # try adding some noise

print("image shape {}".format(fIM.shape))

# sectors for combining output images (clockwise from top)
row = np.arange(-R, R + 1)[:, None]
col = np.arange(-R, R + 1)
sector = np.asarray(ntrans * (1 - np.arctan2(col, row) / np.pi) / 2, dtype=int)

# apply each method --------------------

IM = np.zeros_like(fIM) # for inverse Abel transformed images
ymax = 0 # max. speed distribution

for i, method in enumerate(transforms):
print("\n------- {:s} inverse ...".format(method))
t0 = time()

# inverse Abel transform using 'method'
recon = abel.Transform(fIM, method=method, direction="inverse",

symmetry_axis=(0, 1)).transform

print(" {:.4f} s".format(time()-t0))

# copy sector to combined output image
idx = sector == i
IM[idx] = recon[idx]

# method label for each quadrant
annot_angle = 2 * np.pi * (0.5 + i) / ntrans
annot_coord = (R + 0.8 * R * np.sin(annot_angle),

R - 0.8 * R * np.cos(annot_angle))
ax1.annotate(method, annot_coord, color="white", ha="center")

# polar projection and speed profile

(continues on next page)
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radial, speed = abel.tools.vmi.angular_integration_3D(recon)

# plot speed distribution
ax2.plot(radial, speed, label=method)

# update limit
ymax = max(ymax, speed.max())

plt.suptitle('Dribinski sample image')

ax1.set_title('Inverse Abel comparison')
vmax = IM[:, R+2:].max() # ignoring pixels near center line
ax1.imshow(IM, vmin=0, vmax=0.1 * vmax)

ax2.set_title('Angular integration')
ax2.set_xlabel('Radial coordinate (pixel)')
ax2.set_xlim(0, 150)
ax2.set_ylabel('Integrated intensity')
ax2.set_ylim(-0.1 * ymax, 1.2 * ymax)
ax2.set_yticks([])
ax2.legend(ncol=2, labelspacing=0.1, frameon=False)

plt.tight_layout()
# plt.savefig('plot_example_all_dribinski.png', dpi=100)
plt.show()
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7.9 Example: Dasch methods

# -*- coding: utf-8 -*-
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

"""example_dasch_methods.py.
"""

import numpy as np
import abel
import matplotlib.pyplot as plt

# Dribinski sample image size 501x501
n = 501
IM = abel.tools.analytical.SampleImage(n).func

# split into quadrants
origQ = abel.tools.symmetry.get_image_quadrants(IM)

# speed distribution of original image
orig_speed = abel.tools.vmi.angular_integration_3D(origQ[0], origin=(-1, 0))
scale_factor = orig_speed[1].max()

plt.plot(orig_speed[0], orig_speed[1]/scale_factor, linestyle='dashed',
label="Dribinski sample")

# forward Abel projection
fIM = abel.Transform(IM, direction="forward", method="hansenlaw").transform

# split projected image into quadrants
Q = abel.tools.symmetry.get_image_quadrants(fIM)

dasch_transform = {
"two_point": abel.dasch.two_point_transform,
"three_point": abel.dasch.three_point_transform,
"onion_peeling": abel.dasch.onion_peeling_transform

}

for method in dasch_transform.keys():
Q0 = Q[0].copy()

# method inverse Abel transform
AQ0 = dasch_transform[method](Q0)

# speed distribution
speed = abel.tools.vmi.angular_integration_3D(AQ0, origin=(-1, 0))

plt.plot(speed[0], speed[1]*orig_speed[1][14]/speed[1][14]/scale_factor,
label=method)

plt.title("Dasch methods for Dribinski sample image $n={:d}$".format(n))
(continues on next page)
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plt.xlim((0, 250))
plt.legend(loc='upper center', bbox_to_anchor=(0.35, 1), frameon=False)
plt.tight_layout()
# plt.savefig("plot_example_dasch_methods.png",dpi=100)
plt.show()
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7.10 Example: Onion Bordas

# -*- coding: utf-8 -*-
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

import numpy as np
import abel
import matplotlib.pyplot as plt

# Dribinski sample image
IM = abel.tools.analytical.SampleImage(n=501).func

(continues on next page)
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# split into quadrants
origQ = abel.tools.symmetry.get_image_quadrants(IM)

# speed distribution
orig_speed = abel.tools.vmi.angular_integration_3D(origQ[0], origin=(-1, 0))

# forward Abel projection
fIM = abel.Transform(IM, direction="forward", method="hansenlaw").transform

# split projected image into quadrants
Q = abel.tools.symmetry.get_image_quadrants(fIM)
Q0 = Q[0].copy()

# onion_bordas inverse Abel transform
borQ0 = abel.onion_bordas.onion_bordas_transform(Q0)
# speed distribution
bor_speed = abel.tools.vmi.angular_integration_3D(borQ0, origin=(-1, 0))

plt.plot(*orig_speed, linestyle='dashed', label="Dribinski sample")
plt.plot(bor_speed[0], bor_speed[1], label="onion_bordas")
plt.xlim((0, 300))
plt.legend(loc=0)
plt.tight_layout()
# plt.savefig("plot_example_onion_bordas.png",dpi=100)
plt.show()
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7.11 Example: Linbasex

# -*- coding: utf-8 -*-
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

import numpy as np
import abel
import os
import bz2

import matplotlib.pylab as plt

# This example demonstrates ``linbasex`` inverse Abel transform
# of a velocity-map image of photoelectrons from O2- photodetachment at 454 nm.
# Measured at The Australian National University
# J. Chem. Phys. 133, 174311 (2010) DOI: 10.1063/1.3493349

# Load image as a numpy array - numpy handles .gz, .bz2
imagefile = bz2.BZ2File('data/O2-ANU1024.txt.bz2')

(continues on next page)
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IM = np.loadtxt(imagefile)

if os.environ.get('READTHEDOCS', None) == 'True':
IM = IM[::2, ::2]

# the [::2, ::2] reduces the image size x1/2, decreasing processing memory load
# for the online readthedocs.org

# Image center should be mid-pixel and the image square,
# `origin="convolution"` takes care of this
IM = abel.tools.center.center_image(IM, origin="convolution", square=True)

un = [0, 2] # spherical harmonic orders
proj_angles = np.arange(0, 2*np.pi, np.pi/20) # projection angles
# adjust these parameter to 'improve' the look
smoothing = 0.9 # smoothing Gaussian 1/e width
threshold = 0.01 # exclude small amplitude Newton spheres
# no need to change these
radial_step = 1
clip = 0

# linbasex inverse Abel transform
LIM = abel.Transform(IM, method="linbasex",

transform_options=dict(legendre_orders=un,
proj_angles=proj_angles,
smoothing=smoothing,
radial_step=radial_step, clip=clip,
threshold=threshold))

# angular, and radial integration - direct from `linbasex` transform
# as class attributes
radial = LIM.radial
speed = LIM.Beta[0]
anisotropy = LIM.Beta[1]

# normalize to max intensity peak i.e. max peak height = 1
speed /= speed[200:].max() # exclude transform noise near centerline of image

# plots of the analysis
fig = plt.figure(figsize=(10, 5))
ax1 = plt.subplot(121)
ax2 = plt.subplot(122)

# join 1/2 raw data : 1/2 inversion image
inv_IM = LIM.transform
cols = inv_IM.shape[1]
c2 = cols//2
vmax = IM[:, :c2-100].max()
inv_IM *= vmax/inv_IM[:, c2+100:].max()
JIM = np.concatenate((IM[:, :c2], inv_IM[:, c2:]), axis=1)

# raw data
im1 = ax1.imshow(JIM, origin='upper', vmin=0, vmax=vmax)

(continues on next page)
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ax1.set_xlabel('column (pixels)')
ax1.set_ylabel('row (pixels)')
ax1.set_title('VMI, inverse Abel: {:d}×{:d}'.format(*inv_IM.shape),

fontsize='small')

# Plot the 1D speed distribution and anisotropy parameter ("looks" better
# if multiplied by the intensity)
ax2.plot(radial, speed, label='speed')
ax2.plot(radial, speed*anisotropy, label=r'anisotropy $\times$ speed')
ax2.set_xlabel('radial pixel')
row, cols = IM.shape
ax2.axis(xmin=100*cols/1024, xmax=500*cols/1024)
ax2.set_title('speed, anisotropy parameter', fontsize='small')
ax2.set_ylabel('intensity')
ax2.set_xlabel('radial coordinate (pixels)')

plt.legend(loc='best', frameon=False, labelspacing=0.1, fontsize='small')
plt.suptitle(r'linbasex inverse Abel transform of O$_{2}{}^{-}$ electron '

'velocity-map image',
fontsize='larger')

plt.tight_layout()

# Save a image of the plot
# plt.savefig("plot_example_linbasex.png", dpi=100)

# Show the plots
plt.show()

0 100 200 300 400 500
column (pixels)

0

100

200

300

400

500

ro
w 

(p
ixe

ls)

VMI, inverse Abel: 511×511

50 75 100 125 150 175 200 225
radial coordinate (pixels)

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

in
te

ns
ity

speed, anisotropy parameter

speed
anisotropy × speed

linbasex inverse Abel transform of O2  electron velocity-map image

188 Chapter 7. Examples



PyAbel Documentation, Release 0.9.0

7.12 Example: rBasex beam block

from __future__ import division, print_function

import numpy as np
import matplotlib.pyplot as plt
from copy import copy

import abel
from abel.tools.analytical import SampleImage
from abel.tools.vmi import rharmonics
from abel.rbasex import rbasex_transform

# This example demonstrates analysis of velocity-map images with "damaged"
# areas, in this case, with some parts obstructed by a beam block (see
# https://aip.scitation.org/doi/10.1063/1.4921990 for a practical example).
# First, a general Abel-transform method is used naively to demonstrate
# artifacts produced in the reconstructed image and the extracted radial
# distributions.
# Second, radial distributions are extracted from the same reconstructed image,
# but with its artifacts masked, showing good agreement with the actual
# distributions.
# Third, the rBasex method is used to transform the initial damaged image with
# the experimental artifacts masked, yielding a correct and cleaner
# reconstructed image and correct reconstructed distributions.

R = 150 # image radius
N = 2 * R + 1 # full image width and height
block_r = 20 # beam-block disk radius
block_w = 5 # beam-block holder width

vlim = 3.6 # intensity limits for images
ylim = (-1.3, 2.7) # limits for plots

# create source distribution and its profiles for reference
source = SampleImage(N).func / 100
r_src, P0_src, P2_src = rharmonics(source)

# simulate experimental image:
# projection
im, _ = rbasex_transform(source, direction='forward')
# Poissonian noise
im[im < 0] = 0
im = np.random.RandomState(0).poisson(im)
# image coordinates
im_x = np.arange(float(N)) - R
im_y = R - np.arange(float(N))[:, None]
im_r = np.sqrt(im_x**2 + im_y**2)
# simulate beam-block shadow
im = im / (1 + np.exp(-(im_r - block_r)))
im[:R] *= 1 / (1 + np.exp(-(np.abs(im_x) - block_w)))

(continues on next page)
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# create mask that fully covers beam-block shadow
mask_r = block_r + 5
mask_w = block_w + 5
mask = np.ones_like(im)
mask[im_r < mask_r] = 0
mask[:R, R-mask_w:R+mask_w] = 0

# reconstruct "as is" by a general Abel-transform method
rec_abel = abel.Transform(im, method='two_point').transform
# extract profiles "as is"
r_abel, P0_abel, P2_abel = rharmonics(rec_abel)
# extract profiles from masked reconstruction
r_abel_masked, P0_abel_masked, P2_abel_masked = rharmonics(rec_abel, weights=mask)

# reconstruct masked image with rBasex
rec_rbasex, distr_rbasex = rbasex_transform(im, weights=mask)
r_rbasex, P0_rbasex, P2_rbasex = distr_rbasex.rharmonics()

# plotting...
plt.figure(figsize=(7, 7))

cmap_hot = copy(plt.cm.hot)
cmap_hot.set_bad('lightgray')
cmap_seismic = copy(plt.cm.seismic)
cmap_seismic.set_bad('lightgray')

def plots(row,
im_title, im, im_mask,
tr_title, tr, tr_mask,
pr_title, r, P0, P2):

# input image
if im is not None:

plt.subplot(3, 4, 4 * row + 1)
plt.title(im_title)
im_masked = np.ma.masked_where(im_mask == 0, im)
plt.imshow(im_masked, cmap=cmap_hot)
plt.axis('off')

# transformed image
plt.subplot(3, 4, 4 * row + 2)
plt.title(tr_title)
tr_masked = np.ma.masked_where(tr_mask == 0, tr)
plt.imshow(tr_masked, vmin=-vlim, vmax=vlim, cmap=cmap_seismic)
plt.axis('off')

# profiles
plt.subplot(3, 2, 2 * row + 2)
plt.title(pr_title)
plt.axvspan(0, mask_r, color='lightgray') # shade region without valid data
plt.plot(r_src, P0_src, 'C0--', lw=1)
plt.plot(r_src, P2_src, 'C3--', lw=1)
plt.plot(r, P0, 'C0', lw=1, label='$P_0(r)$')

(continues on next page)
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plt.plot(r, P2, 'C3', lw=1, label='$P_2(r)$')
plt.xlim((0, R))
plt.ylim(ylim)
plt.legend()

plots(0,
'Raw image', im, None,
'Two-point', rec_abel, None,
'Profiles', r_abel, P0_abel, P2_abel)

plots(1,
None, None, None,
'Two-point + mask', rec_abel, mask,
'Masked profiles', r_abel_masked, P0_abel_masked, P2_abel_masked)

plots(2,
'Masked image', im, mask,
'rBasex', rec_rbasex, None,
'Profiles', r_rbasex, P0_rbasex, P2_rbasex)

plt.subplots_adjust(left=0.01, right=0.97, wspace=0.1,
bottom=0.04, top=0.96, hspace=0.3)

plt.show()
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7.13 Example: rBasex multimass

from __future__ import division, print_function

import numpy as np
import matplotlib.pyplot as plt

import abel
from abel.rbasex import rbasex_transform

# This example demonstrates analysis of partially overlapping velocity-map
(continues on next page)
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# images, which might be useful for the "multimass imaging" method (see
# https://pubs.acs.org/doi/10.1021/jp053143m).
# Reconstruction of each part of the combined image uses zero weights for all
# pixels not belonging to that part or contaminated by signals from other
# parts in order to extract distributions pertaining to that part only.
# Notice that the central image in this example cannot be correctly
# reconstructed by "usual" Abel-transform methods, since all its quadrants are
# contaminated. However, the remaining uncontaminated radial and angular ranges
# are sufficient for rBasex to reconstruct the complete distributions.

# Create an artificial sample image from experimental and synthetic images.
# central image
im2 = np.loadtxt('data/O2-ANU1024.txt.bz2')
from scipy.ndimage import zoom
im2 = zoom(im2, 0.75) # (resized for better visibility)
h2, w2 = im2.shape
# right image
im3 = np.loadtxt('data/VMI_art1.txt.bz2')
im3 *= 2 # (intensified for better visibility)
h3, w3 = im3.shape
# left image
h1 = w1 = min(h3, w3)
r1 = h1 // 2
x = np.linspace(-r1, r1, w1)
im1 = np.random.RandomState(0).poisson(200 * np.exp(-(x**2 + x[:, None]**2) /

(r1 / 3)**2))
# assemble the whole image
h, w = max(h2, h3), w2 + w3
im = np.zeros((h, w))
row1, col1 = (h - h1) // 2, 0
im[row1:row1+h1, col1:col1+w1] += im1
row2, col2 = (h - h2) // 2, (w - w2) // 2
im[row2:row2+h2, col2:col2+w2] += im2
row3, col3 = (h - h3) // 2, w - w3
im[row3:row3+h3, col3:col3+w3] += im3

# Origins and maximal radii for each part
# (in reality they will need to be determined from the data somehow; also,
# in practice it would be better to cut the whole image into parts and work
# with them separately, which is not done here to simplify the code).
# for left image
origin1 = (h // 2 - 1, w1 // 2)
r1 = min(h1, w1) // 2
# for central image
origin2 = (h // 2, w // 2)
r2 = min(h2, w2) // 2 - 50
# for right image
origin3 = (h // 2 - 1, w - w3 // 2 - 1)
r3 = min(h3, w3) // 2

# Create "masks" for each part with unit weights for "good" pixels and zero
# weights for "bad" pixels.

(continues on next page)
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# coordinates relative to each origin
x1, y1 = abel.tools.polar.index_coords(im, origin=origin1)
x2, y2 = abel.tools.polar.index_coords(im, origin=origin2)
x3, y3 = abel.tools.polar.index_coords(im, origin=origin3)
# for left image (include left, exclude central)
mask1 = np.array((x1**2 + y1**2 < r1**2) * # inside radius r1 from origin1 and

(x2**2 + y2**2 > r2**2), # outside radius r2 from origin2
dtype=float)

# for central image (include central, exclude left and right)
mask2 = np.array((x2**2 + y2**2 < r2**2) * # inside radius r2 from origin2 and

(x1**2 + y1**2 > r1**2) * # outside radius r1 from origin1 and
(x3**2 + y3**2 > r3**2), # outside radius r3 from origin3
dtype=float)

# for right image (include right, exclude central)
mask3 = np.array((x3**2 + y3**2 < r3**2) * # inside radius r3 from origin3 and

(x2**2 + y2**2 > r2**2), # outside radius r2 from origin2
dtype=float)

fig = plt.figure(figsize=(12, 8))

# Show the whole image
plt.subplot(221)
plt.title('Partially overlapping images\n'

'(with outlined regions for analysis)')
plt.imshow(im, cmap='hot')
# overlay with the boundaries of each mask (only for demonstration)
from scipy.ndimage import binary_erosion
brush = np.ones((11, 11))
dmask = 1 * (mask1 - binary_erosion(mask1, structure=brush)) + \

2 * (mask2 - binary_erosion(mask2, structure=brush)) + \
3 * (mask3 - binary_erosion(mask3, structure=brush))

dmask[dmask == 0] = np.nan
from matplotlib.colors import ListedColormap
rgb = ListedColormap(['#CC0000', '#00AA00', '#0055FF'])
plt.imshow(dmask, extent=(0, w, 0, h), cmap=rgb, interpolation='nearest')

# Analyze the left part and plot results
plt.subplot(222)
plt.title('Distributions: left image')
# the reconstructed image is not used in this example, so it is not created;
# also notice that order=0 is enough for this totally isotropic case
_, distr = rbasex_transform(im, origin=origin1, rmax=r1, order=0,

weights=mask1, out=None)
r, I = distr.rIbeta()
plt.plot(r, I, c=rgb(0), label='$I(r)$')
plt.legend()
plt.autoscale(enable=True, tight=True)

# Analyze the central part and plot results
plt.subplot(223)
plt.title('Distributions: central image')
# here the default order=2 is needed and used

(continues on next page)
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_, distr = rbasex_transform(im, origin=origin2, rmax=r2, weights=mask2, out=None)
r, I, beta = distr.rIbeta()
plt.plot(r, I, c=rgb(1), label='$I(r)$')
# beta(r) I(r) is the "speed distribution" of P_2(r)
plt.plot(r, beta * I, c='gray', label='$\\beta(r) \\cdot I(r)$')
plt.legend()
plt.autoscale(enable=True, tight=True)

# Analyze the right part and plot results
plt.subplot(224)
plt.title('Distributions: right image')
_, distr = rbasex_transform(im, origin=origin3, rmax=r3, weights=mask3, out=None)
r, I, beta = distr.rIbeta()
plt.plot(r, I, c=rgb(2), label='$I(r)$')
plt.plot(r, I * beta, c='gray', label='$\\beta(r) \\cdot I(r)$')
plt.legend()
plt.autoscale(enable=True, tight=True)

plt.tight_layout()
plt.show()
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7.14 Example: Daun regularizations

# -*- coding: UTF-8 -*-
from __future__ import division
import numpy as np
import matplotlib.pyplot as plt
import abel

# one quadrant of Dribinski sample image, its size and intensity distribution
im = abel.tools.analytical.SampleImage().func
q0 = abel.tools.symmetry.get_image_quadrants(im)[0]
n = q0.shape[0]
I0, _ = abel.tools.vmi.Ibeta(q0, origin='ll')

# forward-transformed quadrant
Q = abel.rbasex.rbasex_transform(q0, origin='ll', direction='forward')[0]
# rescale intensities to 1000 max
scale = 1000 / Q.max()
q0 *= scale
I0 *= scale
Q *= scale
# add Poissonian noise
Q = np.random.RandomState(0).poisson(Q)

# regularization parameters
regs = [None,

('diff', 100), # RMS optimal is ~50
('L2c', 50), # RMS optimal is ~25
'nonneg']

# array for corresponding intensity distributions
Is = []

plt.figure(figsize=(7, 5))

# transformed images
for i, reg in enumerate(regs):

plt.subplot(3, 4, 1 + i)
plt.axis('off')

q = abel.daun.daun_transform(Q, degree=1, reg=reg)
plt.imshow(q, clim=(-3, 3), cmap='seismic')
plt.text(n / 2, 0, 'reg=' + repr(reg), ha='center', va='top')

I, _ = abel.tools.vmi.Ibeta(q, origin='ll')
Is.append(I)

# plots of intensity distributions
for plot in [2, 3]:

plt.subplot(3, 1, plot)
plt.axhline(0, c='k', ls=':', lw=1)
plt.plot(I0, '--k', lw=1)

(continues on next page)
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for i, reg in enumerate(regs):
plt.plot(Is[i], lw=1, label=repr(reg))

plt.xlim((0, n - 1))
plt.yticks([])
if plot == 2: # full y range

plt.xticks([])
plt.legend(loc='upper center', bbox_to_anchor=(0.25, 1))

else: # magnified
plt.ylim((-2000, 8000))

plt.subplots_adjust(left=0.01, right=0.98,
bottom=0.05, top=1,
wspace=0, hspace=0.03)

plt.show()

reg=None reg=('diff', 100) reg=('L2c', 50) reg='nonneg'

None
('diff', 100)
('L2c', 50)
'nonneg'

0 20 40 60 80 100 120 140 160 180

7.14. Example: Daun regularizations 197



PyAbel Documentation, Release 0.9.0

7.15 Example: Daun degree

# -*- coding: UTF-8 -*-
from __future__ import division
import numpy as np
import matplotlib.pyplot as plt
from scipy.interpolate import make_interp_spline, splev
import abel

# one quadrant of Dribinski sample image, its size and intensity distribution
im = abel.tools.analytical.SampleImage().func
q0 = abel.tools.symmetry.get_image_quadrants(im)[0]
n = q0.shape[0]
I0, _ = abel.tools.vmi.Ibeta(q0, origin='ll')

# forward-transformed quadrant
Q = abel.rbasex.rbasex_transform(q0, origin='ll', direction='forward')[0]
# rescale intensities to 1000 max
scale = 1000 / Q.max()
q0 *= scale
I0 *= scale
Q *= scale
# add Poissonian noise (comment out to compare the clean transform results)
Q = np.random.RandomState(0).poisson(Q)

# array for corresponding intensity distributions
Is = []

plt.figure(figsize=(7, 5))

# transformed images
for degree in range(4):

plt.subplot(3, 4, 1 + degree)
plt.axis('off')

q = abel.daun.daun_transform(Q, degree=degree)
plt.imshow(q, clim=(-3, 3), cmap='seismic')
plt.text(n / 2, 0, 'degree=' + str(degree), ha='center', va='top')

I, _ = abel.tools.vmi.Ibeta(q, origin='ll')
Is.append(I)

# pixel subdivisions for smooth plots
sub = 10
rsub = np.linspace(0, n, sub * n + 1)

# plots of intensity distributions
for plot in [2, 3]:

plt.subplot(3, 1, plot)
plt.axhline(0, c='k', ls=':', lw=1)
plt.plot(I0, '--k', lw=1)

(continues on next page)

198 Chapter 7. Examples



PyAbel Documentation, Release 0.9.0

(continued from previous page)

# degree = 0: plot with steps
plt.step(np.arange(n), Is[0], lw=1, label='0', where='mid')
# degree = 1: plot with lines
plt.plot(Is[1], lw=1, label='1')
# degree = 2: plot using parabolic segments
r1, r2 = np.arange(sub // 2) / sub, np.arange(sub // 2, 0, -1) / sub
b = np.concatenate((2 * r1**2, 1 - 2 * r2**2, 1 - 2 * r1**2, 2 * r2**2))
I = np.zeros_like(rsub)
for m in range(1, n):

i0 = sub * m
I[i0 - sub: i0 + sub] += Is[2][m] * b

plt.plot(rsub, I, lw=1, label='2')
# degree = 3: plot with cubic splines
spl = make_interp_spline(np.arange(n), Is[3], bc_type='clamped')
plt.plot(rsub, splev(rsub, spl), lw=1, label='3')

plt.xlim((0, n - 1))
plt.yticks([])
if plot == 2: # full y range

plt.xticks([])
plt.legend(loc='upper center', bbox_to_anchor=(0.25, 1))

else: # magnified
plt.ylim((-2000, 8000))

plt.subplots_adjust(left=0.01, right=0.98,
bottom=0.05, top=1,
wspace=0, hspace=0.03)

plt.show()
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7.16 Example: Anisotropy parameter

# -*- coding: utf-8 -*-
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

import numpy as np
import abel
import bz2

import matplotlib.pylab as plt

# Demonstration of two techniques to determine the anisotropy parameter
# (a) directly, using `linbasex`
# (b) from the inverse Abel transformed image

# Load image as a numpy array
imagefile = bz2.BZ2File('data/O2-ANU1024.txt.bz2')
IM = np.loadtxt(imagefile)
# use scipy.misc.imread(filename) to load image formats (.png, .jpg, etc)

(continues on next page)
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# === linbasex transform ===================================
proj_angles = np.arange(0, 180, 10)/180*np.pi # projection angles in 10° steps
radial_step = 1 # pixel grid
smoothing = 0.9 # smoothing 1/e-width for Gaussian convolution smoothing
threshold = 0.2 # threshold for normalization of higher order Newton spheres
clip = 0 # clip first vectors (smallest Newton spheres) to avoid singularities

# linbasex method - center and center_options ensure image has odd square shape
LIM = abel.Transform(IM, method='linbasex', origin='slice',

center_options=dict(square=True),
transform_options=dict(

proj_angles=proj_angles,
radial_step=radial_step, smoothing=smoothing,
threshold=threshold, clip=clip,
verbose=True))

# === Hansen & Law inverse Abel transform ==================
HIM = abel.Transform(IM, origin="slice", method="hansenlaw",

symmetry_axis=None, angular_integration=True)

# speed distribution
radial, speed = HIM.angular_integration

# normalize to max intensity peak
speed /= speed[200:].max() # exclude transform noise near centerline of image

# PAD - photoelectron angular distribution from image ======================
# Note: `linbasex` provides the anisotropy parameter directly LIM.Beta[1]
# here we extract I vs theta for given radial ranges
# and use fitting to determine the anisotropy parameter
#
# radial ranges (of spectral features) to follow intensity vs angle
# view the speed distribution to determine radial ranges
r_range = [(145, 162), (200, 218), (230, 250), (255, 280), (280, 310),

(310, 330), (330, 350), (350, 370), (370, 390), (390, 410),
(410, 430)]

# anisotropy parameter from image for each tuple r_range
Beta, Amp, Rmid, Ivstheta, theta =\

abel.tools.vmi.radial_integration(HIM.transform, radial_ranges=r_range)

# OR anisotropy parameter for ranges (0, 20), (20, 40) ...
# Beta_whole_grid, Amp_whole_grid, Radial_midpoints =\
# abel.tools.vmi.anisotropy(AIM.transform, 20)

# Radial intensity and anisotropy distributions
I, beta2 = abel.tools.vmi.Ibeta(HIM.transform, window=9)
# normalize to max intensity peak
I /= I.max()
# remove (noisy) anisotropy values for low-intensity parts
beta2[I < 0.01] = np.nan

(continues on next page)
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# plots of the analysis
fig = plt.figure(figsize=(8, 3.5))
ax1 = plt.subplot(121)
ax2 = plt.subplot(122)

# join 1/2 raw data : 1/2 inversion image
rows, cols = IM.shape
c2 = cols//2
vmax = IM[:, :c2-100].max()
AIM = HIM.transform
AIM *= vmax/AIM[:, c2+100:].max()
JIM = np.concatenate((IM[:, :c2], AIM[:, c2:]), axis=1)

# Plot the image data VMI | inverse Abel
im1 = ax1.imshow(JIM, origin='lower', vmin=0, vmax=vmax)
fig.colorbar(im1, ax=ax1, fraction=.1, shrink=0.9, pad=0.03)
ax1.set_xlabel('x (pixels)')
ax1.set_ylabel('y (pixels)')
ax1.set_title('VMI, inverse Abel: {:d}×{:d}'.format(rows, cols))

# Plot the 1D speed distribution
line01, = ax2.plot(LIM.Beta[0], 'r-', label='linbasex-Beta[0]')
line02, = ax2.plot(speed, 'b-', label='speed')
line03, = ax2.plot(I, 'c--', label='$I(r)$')
legend0 = ax2.legend(handles=[line01, line02, line03],

frameon=False, labelspacing=0.1, numpoints=1, loc=2,
fontsize='small')

plt.gca().add_artist(legend0)

# Plot anisotropy parameter, attribute Beta[1], x speed
line11, = ax2.plot(LIM.Beta[1], 'r-', label='linbasex-Beta[2]')
BetaT = np.transpose(Beta)
line12 = ax2.errorbar(Rmid, BetaT[0], BetaT[1], fmt='.', color='g',

label='specific radii')
# ax2.plot(Radial_midpoints, Beta_whole_grid[0], '-g', label='stepped')
line13, = ax2.plot(beta2, 'c', label=r'$\beta_2(r)$')
legend1 = ax2.legend(handles=[line11, line12, line13],

frameon=False, labelspacing=0.1, numpoints=1, loc=3,
fontsize='small')

ax2.axis(xmin=100, xmax=450, ymin=-1.2, ymax=1.2)
ax2.set_xlabel('radial pixel')
ax2.set_ylabel('speed/anisotropy')
ax2.set_title('speed/anisotropy distribution')

plt.tight_layout()

# Save a image of the plot
# plt.savefig("plot_example_PAD.png", dpi=100)

# Show the plots

(continues on next page)
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plt.show()
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7.17 Example: Circularize image

import numpy as np
import matplotlib.pyplot as plt
import abel
from abel.tools.circularize import circularize, circularize_image
import scipy.interpolate

#######################################################################
#
# example_circularize_image.py
#
# O- sample image -> forward Abel + distortion = measured VMI
# measured VMI -> inverse Abel transform -> speed distribution
# Compare disorted and circularized speed profiles
#
#######################################################################

# sample image -----------
IM = abel.tools.analytical.SampleImage(n=511, name='Ominus', sigma=2).func

# forward transform == what is measured
IMf = abel.Transform(IM, method='hansenlaw', direction="forward").transform

# flower image distortion
def flower_scaling(theta, freq=2, amp=0.1):

return 1 + amp * np.sin(freq * theta)**4

# distort the image
(continues on next page)
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IMdist = circularize(IMf, radial_correction_function=flower_scaling)

# circularize ------------
IMcirc, sla, sc, scspl = circularize_image(IMdist,

method='lsq', dr=0.5, dt=0.1,
tol=0, return_correction=True)

# inverse Abel transform for distored and circularized images ---------
AIMdist = abel.Transform(IMdist, method="three_point").transform
AIMcirc = abel.Transform(IMcirc, method="three_point").transform

# respective speed distributions
rdist, speeddist = abel.tools.vmi.angular_integration_3D(AIMdist, dr=0.5)
rcirc, speedcirc = abel.tools.vmi.angular_integration_3D(AIMcirc, dr=0.5)

# note the small image size is responsible for the slight over correction
# of the background near peaks

row, col = IMcirc.shape

# plot --------------------

fig, axs = plt.subplots(2, 2, figsize=(8, 8))
fig.subplots_adjust(wspace=0.5, hspace=0.5)

extent = (np.min(-col // 2), np.max(col // 2),
np.min(-row // 2), np.max(row // 2))

axs[0, 0].imshow(IMdist, origin='lower', extent=extent)
axs[0, 0].set_title("Ominus distorted sample image")

axs[0, 1].imshow(AIMcirc, vmin=0, origin='lower', extent=extent)
axs[0, 1].set_title("circ. + inv. Abel")

axs[1, 0].plot(sla, sc, 'o')
ang = np.arange(-np.pi, np.pi, 0.1)
axs[1, 0].plot(ang, scspl(ang))
axs[1, 0].set_xticks([-np.pi, 0, np.pi])
axs[1, 0].set_xticklabels([r"$-\pi$", "0", r"$\pi$"])
axs[1, 0].set_xlabel("angle (radians)")
axs[1, 0].set_ylabel("radial correction factor")
axs[1, 0].set_title("radial correction")

axs[1, 1].plot(rdist, speeddist, label='dist.')
axs[1, 1].plot(rcirc, speedcirc, label='circ.')
axs[1, 1].axis(xmin=100, xmax=240)
axs[1, 1].set_title("speed distribution")
axs[1, 1].legend(frameon=False)
axs[1, 1].set_xlabel('radius (pixels)')
axs[1, 1].set_ylabel('intensity')

plt.tight_layout(h_pad=2, w_pad=2)
# plt.savefig("plot_example_circularize_image.png", dpi=75)

(continues on next page)
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(continued from previous page)

plt.show()
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Contributing to PyAbel

PyAbel is an open-source project, and we welcome improvements! Please let us know about any issues with the
software, even if’s just a typo. The easiest way to get started is to open a new issue.

If you would like to make a pull request, the following information may be useful.

8.1 Rebasing

If possible, before submitting your pull request please rebase your fork on the last master on PyAbel. This could be
done as explained in this post:

# Add the remote, call it "upstream" (only the fist time)
git remote add upstream https://github.com/PyAbel/PyAbel.git

# Fetch all the branches of that remote into remote-tracking branches,
# such as upstream/master:

git fetch upstream

# Make sure that you're on your master branch
# or any other branch your are working on

git checkout master # or your other working branch

# Rewrite your master branch so that any commits of yours that
# aren't already in upstream/master are replayed on top of that
# other branch:

git rebase upstream/master

# push the changes to your fork

git push -f

See this wiki for more information.
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8.2 Code style

We hope that the PyAbel code will be understandable, hackable, and maintainable for many years to come. So, please
use good coding style, include plenty of comments, use docstrings for functions, and pick informative variable names.

PyAbel attempts to follow PEP8 style whenever possible, since the PEP8 recommendations typically produces code
that is easier to read. You can check your code using pycodestyle, which can be called from the command line or
incorporated right into most text editors. Also, PyAbel is using automated pycodestyle checking of all pull requests
using pep8speaks. However, producing readable code is the primary goal, so please go ahead and break the rules of
PEP8 when doing so improves readability. For example, if a section of your code is easier to read with lines slightly
longer than 79 characters, then use the longer lines.

8.3 Unit tests

Before submitting a pull request, be sure to run the unit tests. The test suite can be run from within the PyAbel package
with

pytest

For more detailed information, the following can be used:

pytest abel/ -v --cov=abel

Note that this requires that you have pytest and (optionally) pytest-cov installed. You can install these with

pip install pytest pytest-cov

8.4 Documentation

PyAbel uses Sphinx and Napoleon to process Numpy-style docstrings and is synchronized to pyabel.readthedocs.io.
To build the documentation locally, you will need Sphinx and the sphinx_rtd_theme. You can install them using

pip install sphinx
pip install sphinx_rtd_theme

Once you have these packages installed, you can build the documentation using

cd PyAbel/doc/
make html

Then you can open doc/_build/hmtl/index.html to look at the documentation. Sometimes you need to use

make clean
make html

to clear out the old documentation and get things to re-build properly.

When you get tired of typing make html every time you make a change to the documentation, it’s nice to use use
sphix-autobuild to automatically update the documentation in your browser for you. So, install sphinx-autobuild using

pip install sphinx-autobuild
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Now you should be able to

cd PyAbel/doc/
make livehtml

which should launch a browser window displaying the docs. When you save a change to any of the docs, the re-build
should happen automatically and the docs should update in a matter of a few seconds.

Alternatively, restview is a nice way to preview the .rst files.

8.5 Changelog

If the change is significant (more than just a typo-fix), please leave a short note about the change in CHANGELOG.rst,
at the bottom of the “Unreleased” section (the PR number can be added later).

8.6 Adding a new forward or inverse Abel implementation

We are always looking for new implementation of forward or inverse Abel transform, therefore if you have an imple-
mentation that you would want to contribute to PyAbel, don’t hesitate to do so.

In order to allow a consistent user experience between different implementations and ensure an overall code quality,
please consider the following points in your pull request.

8.6.1 Naming conventions

The implementation named <implementation>, located under abel/<implementation>.py, should use the fol-
lowing naming system for top-level functions:

• <implemenation>_transform— core transform (when defined)

• _bs_<implementation>— function that generates the basis sets (if necessary)

8.6.2 Unit tests

To detect issues early, the submitted implementation should have the following properties and pass the corresponding
unit tests:

1. The reconstruction has the same shape as the original image. Currently all transform methods operate with
odd-width images and should raise an exception if provided with an even-width image.

2. Given an array with all 0 elements, the reconstruction should also be a 0 array.

3. The implementation should be able to calculated the inverse (or forward) transform of a Gaussian function defined
by a standard deviation sigma, with better than a 10 % relative error with respect to the analytical solution for 0
< r < 2*sigma.

Unit tests for a given implementation are located under abel/tests/test_<implemenation>.py, which should
contain at least the following 3 functions:

• test_<implementation>_shape

• test_<implementation>_zeros

• test_<implementation>_gaussian
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See abel/tests/test_basex.py for a concrete example.

8.7 Dependencies

The current list of dependencies can be found in setup.py. Please refrain from adding new dependencies, unless it
cannot be avoided.

8.8 Citations

Each version of PyAbel that is released triggers a new DOI on Zenodo, so that people can cite the project. If you would
like you name added to the author list on Zenodo, please include it in .zenodo.json.

8.9 For maintainers: Releasing a new version

First, make a pull request that does the following:

• Increment the version number in abel/_version.py.

• Update CHANGELOG.rst by renaming the “Unreleased” section to the new version and the expected release date.

• Use the changelog to write version release notes that can be included as a comment in the PR and will be used
later.

• Update copyright years in doc/conf.py.

After the PR is merged:

• Press the “Draft a new release” button on the Releases page and create a new tag, matching the new version
number (for example, “v1.2.3” for version “1.2.3”).

• Copy and paste the release notes from the PR into the release notes.

• Release it!

• PyAbel should be automatically released on PyPI (see PR #161).

• Check that the new package is on PyPI.

• Check that the new docs are on Read the Docs.

• Check that the new version is on Zenodo.

• A bot should automatically make a PR on the conda-forge repo. This takes a while and needs to be merged
manually.

• Check that the new conda packages are on Anaconda.org.
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Changelog

v0.9.0 (2022-12-14)

• Correct behavior of relative basis_dir in basex under Python 2 (PR #336).

• Improvements in tools.analytical.SampleImage class: more consistent and intuitive interface, accurate Abel
transform for existing images, additional sample images with exact Abel transform (PR #339, #352).

• Analytical Abel transform of axially symmetric piecewise polynomials in spherical coordinates (PR #339).

• Offline HTML and PDF documentation is now available at Read the Docs and can be built locally (PR #343,
#348, #349).

• Important changes in the lin-BASEX implementation (PR #357):

– It was erroneously producing even-sized images with offset origin. Now the output is odd-sized and properly
centered.

– Output images for radial_step > 1 were scaled down by the same factor. Now they have the save size as the
input.

– The sign of Beta for odd Legendre orders is reversed to be consistent with PyAbel conventions (zero angle
is upwards, towards smaller row indices).

• Transform() with method=’linbasex’ now always stores the radial, Beta and projection attributes, so there is no
need to pass return_Beta=True in transform_options (PR #357).

v0.8.5 (2022-01-21)

• New functions in tools.vmi for angular integration and averaging, replacing angular_integration() and average_
radial_intensity(), which had incorrect or nonintuitive behavior (PR #318, PR #319).

• Avoid unnecessary calculations in transform.Transform() for the symmetry_axis=(0, 1) case (PR #324).

• New method by Daun et al. and its extensions (PR #326).

• Basis sets are now by default stored in a single system-specific directory, see get_basis_dir() and set_basis_dir()
in abel.transform (PR #327). Important! The current working directory is no longer used by default for loading
basis sets. It is recommended to execute

import abel; print(abel.transform.get_basis_dir(make=True))

and move all existing basis sets to the reported directory.
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• Cython optimization flags are changed to make conda packages compatible with all CPUs and to improve the
direct_C method performance (PR #331). Bitwise reproducibility of direct_C transforms might be affected.

v0.8.4 (2021-04-15)

• Added odd angular orders to tools.vmi.Distributions (PR #266).

• Important! Some “center” functions/parameters are renamed to “origin” or “method”; using old names still
works but will print deprecation warnings, please update your code accordingly. Image origin is now always in
the (row, column) format for consistency within PyAbel and with NumPy/SciPy; this can break some code, so
please check carefully and update it if necessary. See PR #267.

• Fixed the GUI examples (example_GUI.py and example_simple_GUI.py) so that they work with the lastest ver-
sions of tk (PR #269).

• New method rBasex for velocity-map images, based on pBasex and the work of Mikhail Ryazanov (PR #270).

• Added “orders”, “sinpowers” and “valid” to tools.vmi.Distributions results, reordered cossin() powers for con-
sistency (PR #270).

• Improved tools.vmi.Distributions performance on Windows (PR #270).

• More corrections to the GUI example: working without the “bases” directory, loading “from transform”, interface
enhancements (PR #277).

• Improved documentation (PR #283, PR #288).

• Correctly use quadrants in abel.Transform (PR #287).

• Circularization now uses periodic splines (to avoid discontinuity), with smoothing determined by the RMS tol-
erance instead of the nonintuitive “smooth” parameter (PR #293).

• Corrected and improved tools.center (PR #302).

• Moved numpy import to try block in setup.py. This allows pip to install PyAbel in situations where numpy is not
already installed (PR #310).

v0.8.3 (2019-08-16)

• New tools.vmi.Distributions class for extracting radial intensity and anisotropy distributions (PR #257).

• Dropped PyAbel version from basex cache files (PR #260).

v0.8.2 (2019-07-11)

• Added forward transform to basex method (PR #240).

• Corrected tools.transform_pairs.profile4 (PR #241).

• Removed tools.transform_pairs.profile8, which was the same as profile6 (PR #241).

• Major changes in benchmark.AbelTiming class (PR #244, #252).

• Corrected image shift in onion_bordas method (PR #248).

• Changed gradient calculations in hansenlaw method to first-order finite difference (PR #249).

• Corrected background width for Dribinski sample image in tools.analytical.SampleImage (PR #255).
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v0.8.1 (2018-11-29)

• Implemented Tikhonov regularization in basex method (PR #227).

• Improvements and changes in basis caching for methods using basis sets (PR #227, #232, #235).

• Improvements in basis generation for basex method, allow any sigma (PR #235).

• Added intensity correction to basex method (PR #235).

• New tools.polynomial module for analytical Abel transform of piecewise polynomials (PR #235).

(2016-04-20)

• Lin-BASEX method of Thomas Gerber and co-workers available (PR #177)

(2016-03-20)

• Dasch two-point, three-point (updated), and onion-peeling available (PR #155).

(2016-03-15)

• Changed abel.transform to be a class rather than a function. The previous syntax of
abel.transform(IM)[‘transform’] has been replaced with abel.Transform(IM).transform.
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